CASIA OpenIR  > 09年以前成果
Do singular values contain adequate information for face recognition?
Tian, Y; Tan, TN; Wang, YH; Fang, YC
2003-03-01
发表期刊PATTERN RECOGNITION
卷号36期号:3页码:649-655
文章类型Article
摘要Singular values (SVs) have been used for face recognition by many researchers. In this paper, we show that the SVs contain little useful information for face recognition and most important information is encoded in the two orthogonal matrices of the SVD. Experimental results are given to support this observation. To overcome this problem, a new method for face recognition based on the above finding is proposed. The face image is projected on to the orthogonal basis of SVD and then the vectors of coefficients are used as the face image features. By using probability density of this image feature obtained by a simplified EM algorithm, the Bayesian classifier is adopted to recognize the unknown faces. The proposed algorithm obtains acceptable experimental results on the ORL face database. (C) 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
关键词Face Recognition Orthogonal Decomposition Svd Bayesian Decision
WOS标题词Science & Technology ; Technology
关键词[WOS]MAXIMUM-LIKELIHOOD ; EM ALGORITHM
收录类别SCI
语种英语
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000179732400006
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/9937
专题09年以前成果
作者单位Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit NLPR, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Tian, Y,Tan, TN,Wang, YH,et al. Do singular values contain adequate information for face recognition?[J]. PATTERN RECOGNITION,2003,36(3):649-655.
APA Tian, Y,Tan, TN,Wang, YH,&Fang, YC.(2003).Do singular values contain adequate information for face recognition?.PATTERN RECOGNITION,36(3),649-655.
MLA Tian, Y,et al."Do singular values contain adequate information for face recognition?".PATTERN RECOGNITION 36.3(2003):649-655.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tian, Y]的文章
[Tan, TN]的文章
[Wang, YH]的文章
百度学术
百度学术中相似的文章
[Tian, Y]的文章
[Tan, TN]的文章
[Wang, YH]的文章
必应学术
必应学术中相似的文章
[Tian, Y]的文章
[Tan, TN]的文章
[Wang, YH]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。