CASIA OpenIR

Browse/Search Results:  1-10 of 11 Help

Selected(0)Clear Items/Page:    Sort:
A Radiomics-Based Multi-Omics Integration Model to Predict the Therapeutic Response to Neoadjuvant Chemoradiotherapy of Rectal Cancer 期刊论文
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2019, 卷号: 105, 期号: 1, 页码: S119-S119
Authors:  Feng, L.;  Liu, Z.;  Lou, X.;  Zhou, X.;  Chen, H.;  Pang, X.;  Liu, S.;  He, F.;  Wei, M. B.;  Tian, J.;  Wan, X.
Favorite  |  View/Download:13/0  |  Submit date:2019/12/16
Prognostic Value of Deep Learning PET/CT-Based Radiomics: Potential Role for Future Individual Induction Chemotherapy in Advanced Nasopharyngeal Carcinoma 期刊论文
CLINICAL CANCER RESEARCH, 2019, 卷号: 25, 期号: 14, 页码: 4271-4279
Authors:  Peng, Hao;  Dong, Di;  Fang, Meng-Jie;  Li, Lu;  Tang, Ling-Long;  Chen, Lei;  Li, Wen-Fei;  Mao, Yan-Ping;  Fan, Wei;  Liu, Li-Zhi;  Tian, Li;  Lin, Ai-Hua;  Sun, Ying;  Tian, Jie;  Ma, Jun
Favorite  |  View/Download:9/0  |  Submit date:2019/12/16
Radiomics-Based Pretherapeutic Prediction of Non-response to Neoadjuvant Therapy in Locally Advanced Rectal Cancer 期刊论文
ANNALS OF SURGICAL ONCOLOGY, 2019, 卷号: 26, 期号: 6, 页码: 1676-1684
Authors:  Zhou, Xuezhi;  Yi, Yongju;  Liu, Zhenyu;  Cao, Wuteng;  Lai, Bingjia;  Sun, Kai;  Li, Longfei;  Zhou, Zhiyang;  Feng, Yanqiu;  Tian, Jie
Favorite  |  View/Download:21/0  |  Submit date:2019/07/11
基于深度学习的小样本肿瘤CT影像分析算法研究 学位论文
工学博士, 中国科学院自动化研究所: 中国科学院大学, 2019
Authors:  王硕
Adobe PDF(6465Kb)  |  Favorite  |  View/Download:88/0  |  Submit date:2019/07/08
计算机断层扫描(ct)  深度学习  肿瘤分割  半监督学习  预后分析  
多序列 MRI影像组学辅助肿瘤无创诊断的研究 学位论文
, 北京市海淀区中关村东路95号: 中国科学院自动化研究所, 2019
Authors:  魏靖伟
Adobe PDF(3432Kb)  |  Favorite  |  View/Download:74/3  |  Submit date:2019/06/28
影像组学  人工智能  肿瘤  无创诊断  磁共振成像  
Quantitative analysis of diffusion weighted imaging to predict pathological good response to neoadjuvant chemoradiation for locally advanced rectal cancer 期刊论文
RADIOTHERAPY AND ONCOLOGY, 2019, 卷号: 132, 页码: 100-108
Authors:  Tang, Zhenchao;  Zhang, Xiao-Yan;  Liu, Zhenyu;  Li, Xiao-Ting;  Shi, Yan-Jie;  Wang, Shou;  Fang, Mengjie;  Shen, Chen;  Dong, Enqing;  Sun, Ying-Shi;  Tian, Jie
Favorite  |  View/Download:17/0  |  Submit date:2019/07/12
Locally advanced rectal cancer  Neoadjuvant chemoradiotherapy  Organ-preserving strategies  Diffusion weighted imaging  Decision support  
Radiomics Analysis on T2-MR Image to Predict Lymphovascular Space Invasion in Cervical Cancer 会议论文
, San Diego, USA, 2019-2
Authors:  Wang, Shuo;  Chen, Xi;  Liu, Zhenyu;  Wu, Qingxia;  Zhu, Yongbei;  Wang, Meiyun;  Tian, Jie
View  |  Adobe PDF(540Kb)  |  Favorite  |  View/Download:68/15  |  Submit date:2019/04/30
The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges 期刊论文
Theranostics, 2019, 卷号: 9, 期号: 5, 页码: 1303-1322
Authors:  Liu, Zhenyu;  Wang, Shuo;  Dong, Di;  Wei, Jingwei;  Fang, Cheng;  Zhou, Xuezhi;  Sun, Kai;  Li, Longfei;  Li, Bo;  Wang, Meiyun;  Tian, Jie
View  |  Adobe PDF(2057Kb)  |  Favorite  |  View/Download:50/9  |  Submit date:2019/04/30
Radiomics  Medical Imaging  Precision Diagnosis And Treatment  Oncology  
Deep learning provides a new computed tomography-based prognostic biomarker for recurrence prediction in high-grade serous ovarian cancer 期刊论文
Radiotherapy and Oncology, 2018, 期号: 132, 页码: 171-177
Authors:  Wang, Shuo;  Liu, Zhenyu;  Rong, Yu;  Zhou, Bin;  Bai, Yan;  Wei, Wei;  Wei, Wei;  Wang, Meiyun;  Guo, Yingkun;  Tian, Jie
View  |  Adobe PDF(1623Kb)  |  Favorite  |  View/Download:60/16  |  Submit date:2019/04/30
Deep Learning  High-grade Serous Ovarian Cancer  Recurrence  Prognosis  Computed Tomography  Artificial Intelligence  Semi-supervised Learning  Auto Encoder  Unsupervised Learning  
Unsupervised Deep Learning Features for Lung Cancer Overall Survival Analysis 会议论文
, Honolulu, Hawaii, USA, 2018-7
Authors:  Wang, Shuo;  Liu, Zhenyu;  Chen, Xi;  Zhu, Yongbei;  Zhou, Hongyu;  Tang, Zhenchao;  Wei, Wei;  Dong, Di;  Wang, Meiyun;  Tian, Jie
View  |  Adobe PDF(797Kb)  |  Favorite  |  View/Download:49/23  |  Submit date:2019/04/30
Lung Cancer  Survival Analysis  Deep Learning  Unsupervised Feature Learning  Convolutional Neural Networks