CASIA OpenIR

Browse/Search Results:  1-10 of 79 Help

Selected(0)Clear Items/Page:    Sort:
基于多基因遗传风险的精神分裂症神经机制研究 学位论文
工学硕士, 中国科学院自动化研究所: 中国科学院自动化研究所, 2019
Authors:  刘书
Adobe PDF(9957Kb)  |  Favorite  |  View/Download:55/2  |  Submit date:2019/06/10
精神分裂症  多基因遗传  Mir137  灰质体积  功能连接  
融合结构和功能影像研究阿尔茨海默病脑网络异常 学位论文
, 北京: 中国科学院大学, 2019
Authors:  窦雪娇
Adobe PDF(3991Kb)  |  Favorite  |  View/Download:34/0  |  Submit date:2019/06/04
阿尔茨海默病,弥散张量成像,功能磁共振成像,白质纤维束,默认网络  
Characterizing White Matter Connectivity in Alzheimer's Disease and Mild Cognitive Impairment: Automated Fiber Quantification 会议论文
, The Hilton Molino Stucky in Venice, April 8 - 11, 2019
Authors:  Dou, Xuejiao;  Yao, Hongxiang;  Jin, Dan;  Feng, Feng;  Wang, Pan;  Zhou, Bo;  Liu, Bing;  Yang, Zhengyi;  An, Ningyu;  Zhang, Xi;  Liu, Yong
View  |  Adobe PDF(409Kb)  |  Favorite  |  View/Download:32/9  |  Submit date:2019/04/23
Characterization of white matter changes along fibers by automated fiber quantification in the early stages of Alzheimer's disease 期刊论文
NEUROIMAGE-CLINICAL, 2019, 卷号: 22, 页码: 16
Authors:  Xin Zhang;  Sun, Yu;  Li, Weiping;  Liu, Bing;  Wu, Wenbo;  Zhao, Hui;  Liu, Renyuan;  Zhang, Yue;  Yin, Zhenyu;  Yu, Tingting;  Qing, Zhao;  Zhu, Bin;  Xu, Yun;  Nedelska, Zuzana;  Hort, Jakub;  Zhang, Bing
Favorite  |  View/Download:7/0  |  Submit date:2019/07/11
Alzheimer's disease  Mild cognitive impairment  Automated fiber quantification  Diffusion tensor imaging  Pointwise comparison  
Dictionary-based fiber orientation estimation with improved spatial consistency 期刊论文
MEDICAL IMAGE ANALYSIS, 2018, 卷号: 44, 期号: 44, 页码: 41-53
Authors:  Ye, Chuyang;  Prince, Jerry L.
View  |  Adobe PDF(4635Kb)  |  Favorite  |  View/Download:76/16  |  Submit date:2018/01/12
Diffusion Mri  Dictionary-based Fo Estimation  Spatial Consistency  Pairwise Fo Dissimilarity  
Multimodal Fusion With Reference: Searching for Joint Neuromarkers of Working Memory Deficits in Schizophrenia. 期刊论文
IEEE Trans Med Imaging., 2018, 卷号: 37(1), 期号: 201801, 页码: 93-105
Authors:  Shile Qi;  Vince D. Calhoun;  Theo G. M. van Erp;  Juan Bustillo;  Eswar Damaraju;  Jessica A. Turner;  Yuhui Du;  Jiayu Chen;  Qingbao Yu;  Daniel H. Mathalon;  Judith M. Ford;  James Voyvodic;  Bryon A. Mueller;  Aysenil Belger;  Sarah Mc Ewen;  Steven G. Potkin;  Steven G. Potkin;  Tianzi Jiang;  Sui Jing(隋婧)
View  |  Adobe PDF(1484Kb)  |  Favorite  |  View/Download:151/45  |  Submit date:2018/01/08
Multimodal Fusion With Reference  Mccar  Supervised Learning  Schizophrenia  Working Memory  Ica  Mccb  Cminds  
基于磁共振成像的人类脑网络组图谱的绘制及其方法研究 学位论文
, 北京: 中国科学院大学, 2017
Authors:  李海
Adobe PDF(33528Kb)  |  Favorite  |  View/Download:108/3  |  Submit date:2017/12/06
分区  脑图谱  人类脑网络组图谱  磁共振成像  扩散张量成像  纤维跟踪  并行计算  
Identifying the white matter impairments among ART-naïve HIV patients: a multivariate pattern analysis of DTI data 期刊论文
European Radiology, 2017, 期号: 27, 页码: 4153–4162
Authors:  Liu ZY(刘振宇)
View  |  Adobe PDF(795Kb)  |  Favorite  |  View/Download:72/11  |  Submit date:2018/01/13
Dti  
The Left Dorsolateral Prefrontal Cortex and Caudate Pathway: New Evidence for Cue-Induced Craving of Smokers 期刊论文
HUMAN BRAIN MAPPING, 2017, 卷号: 38, 期号: 9, 页码: 4644-4656
Authors:  Yuan, Kai;  Yu, Dahua;  Bi, Yanzhi;  Wang, Ruonan;  Li, Min;  Zhang, Yajuan;  Dong, Minghao;  Zhai, Jinquan;  Li, Yangding;  Lu, Xiaoqi;  Tian, Jie
Favorite  |  View/Download:68/0  |  Submit date:2018/03/03
Dorsolateral Prefrontal Cortex  Caudate  Smoker  Craving  Diffusion Tensor Imaging  Psychophysiological Interactions  
Disrupted topological organization of structural networks revealed by probabilistic diffusion tractography in Tourette syndrome children 期刊论文
HUMAN BRAIN MAPPING, 2017, 卷号: 38, 期号: 8, 页码: 3988-4008
Authors:  Wen, Hongwei;  Liu, Yue;  Rekik, Islem;  Wang, Shengpei;  Zhang, Jishui;  Zhang, Yue;  Peng, Yun;  He, Huiguang;  He HG(何晖光)
View  |  Adobe PDF(938Kb)  |  Favorite  |  View/Download:151/64  |  Submit date:2017/06/06
Tourette Syndrome  Diffusion Mri  Probabilistic Tractography  Structural Network  Graph Theory  Topological Organization  Multiple Kernel Learning