CASIA OpenIR

Browse/Search Results:  1-5 of 5 Help

Selected(0)Clear Items/Page:    Sort:
Event-Triggered Asymmetric Bipartite Consensus Tracking for Nonlinear Multi-Agent Systems Based on Model-Free Adaptive Control 期刊论文
IEEE/CAA Journal of Automatica Sinica, 2023, 卷号: 10, 期号: 3, 页码: 662-672
Authors:  Jiaqi Liang;  Xuhui Bu;  Lizhi Cui;  Zhongsheng Hou
Adobe PDF(1799Kb)  |  Favorite  |  View/Download:17/2  |  Submit date:2023/03/02
Asymmetric bipartite  consensus tracking  event-triggered  model-free adaptive control (MFAC)  nonlinear systems  signed digraph  
PSO Optimal Control of Model-free Adaptive Control for PVC Polymerization Process 期刊论文
International Journal of Automation and Computing, 2018, 卷号: 15, 期号: 4, 页码: 482-491
Authors:  Shu-Zhi Gao;  Xiao-Feng Wu;  Liang-Liang Luan;  Jie-Sheng Wang;  Gui-Cheng Wang
View  |  Adobe PDF(1024Kb)  |  Favorite  |  View/Download:42/9  |  Submit date:2021/02/23
Polyvinyl chloride (PVC)  polymerization temperature  model-free adaptive control  particle swarm optimization (PSO) algorithm.  
基于数据的系统分析和自适应优化控制器设计 学位论文
, 北京: 中国科学院大学, 2016
Authors:  阎鹏飞
Adobe PDF(2184Kb)  |  Favorite  |  View/Download:225/4  |  Submit date:2016/06/21
基于数据的控制  自适应控制  自适应动态规划  增强学习  误差分析  
Data-driven controller design for general MIMO nonlinear systems via virtual reference feedback tuning and neural networks 期刊论文
NEUROCOMPUTING, 2016, 卷号: 171, 页码: 815-825
Authors:  Yan, Pengfei;  Liu, Derong;  Wang, Ding;  Ma, Hongwen
View  |  Adobe PDF(603Kb)  |  Favorite  |  View/Download:404/78  |  Submit date:2016/01/18
Data-driven Control  Mimo Nonlinear Systems  Model Reference Control  Neural Networks  Virtual Reference Feedback Tuning  
Data-Driven Neuro-Optimal Temperature Control of Water-Gas Shift Reaction Using Stable Iterative Adaptive Dynamic Programming 期刊论文
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2014, 卷号: 61, 期号: 11, 页码: 6399-6408
Authors:  Wei, Qinglai;  Liu, Derong;  Derong Liu
View  |  Adobe PDF(664Kb)  |  Favorite  |  View/Download:192/62  |  Submit date:2015/08/12
Adaptive Critic Designs  Adaptive Dynamic Programming (Adp)  Approximate Dynamic Programming  Approximation Errors  Data-driven Control  Neural Networks (Nns)  Optimal Control  Reinforcement Learning  Water-gas Shift (Wgs)