CASIA OpenIR

Browse/Search Results:  1-10 of 78 Help

Selected(0)Clear Items/Page:    Sort:
Prediction of Microvascular Invasion in Hepatocellular Carcinoma via Deep Learning: A Multi-Center and Prospective Validation Study 期刊论文
CANCERS, 2021, 卷号: 13, 期号: 10, 页码: 19
Authors:  Wei, Jingwei;  Jiang, Hanyu;  Zeng, Mengsu;  Wang, Meiyun;  Niu, Meng;  Gu, Dongsheng;  Chong, Huanhuan;  Zhang, Yanyan;  Fu, Fangfang;  Zhou, Mu;  Chen, Jie;  Lyv, Fudong;  Wei, Hong;  Bashir, Mustafa R.;  Song, Bin;  Li, Hongjun;  Tian, Jie
Adobe PDF(2568Kb)  |  Favorite  |  View/Download:9/0  |  Submit date:2021/06/15
hepatocellular carcinoma  microvascular invasion  magnetic resonance imaging  computed tomography  deep learning  
Exploring the predictive value of additional peritumoral regions based on deep learning and radiomics: A multicenter study 期刊论文
MEDICAL PHYSICS, 2021, 页码: 12
Authors:  Wu, Xiangjun;  Dong, Di;  Zhang, Lu;  Fang, Mengjie;  Zhu, Yongbei;  He, Bingxi;  Ye, Zhaoxiang;  Zhang, Minming;  Zhang, Shuixing;  Tian, Jie
Favorite  |  View/Download:12/0  |  Submit date:2021/05/06
deep learning  peritumor  radiomics  
A review of the application of machine learning in molecular imaging 期刊论文
Annals of Translational Medicine, 2021, 卷号: 0, 期号: 0, 页码: 0
Authors:  Yin, Lin;  Cao, Zhen;  Wang, Kun;  Tian, Jie;  Yang, Xing;  Zhang, Jianhua
Adobe PDF(4435Kb)  |  Favorite  |  View/Download:1/1  |  Submit date:2021/06/16
molecular imaging, machine learning, artificial intelligence  
Preoperative computed tomography-guided disease-free survival prediction in gastric cancer: a multicenter radiomics study 期刊论文
MEDICAL PHYSICS, 2020, 页码: 10
Authors:  Wang, Siwen;  Feng, Caizhen;  Dong, Di;  Li, Hailin;  Zhou, Jing;  Ye, Yingjiang;  Liu, Zaiyi;  Tian, Jie;  Wang, Yi
Favorite  |  View/Download:26/0  |  Submit date:2020/09/07
disease-free survival  gastric cancer  multidetector-row computed tomography  risk stratification  radiomics  
Deep Learning Radiomics Based on Contrast-Enhanced Ultrasound Might Optimize Curative Treatments for Very-Early or Early-Stage Hepatocellular Carcinoma Patients 期刊论文
LIVER CANCER, 2020, 卷号: 9, 期号: 4, 页码: 397-413
Authors:  Liu, Fei;  Liu, Dan;  Wang, Kun;  Xie, Xiaohua;  Su, Liya;  Kuang, Ming;  Huang, Guangliang;  Peng, Baogang;  Wang, Yuqi;  Lin, Manxia;  Tian, Jie;  Xie, Xiaoyan
View  |  Adobe PDF(1066Kb)  |  Favorite  |  View/Download:51/8  |  Submit date:2020/09/07
Contrast-enhanced ultrasound  Hepatocellular carcinoma  Radiomics  Radiofrequency ablation  Surgical resection  
Deep learning radiomic nomogram can predict the number of lymph node metastasis in locally advanced gastric cancer: an international multicenter study 期刊论文
ANNALS OF ONCOLOGY, 2020, 卷号: 31, 期号: 7, 页码: 912-920
Authors:  Dong, Di;  Fang, Mengjie;  Tang, Lei;  Shan, Xiuhong;  Gao, Jianbo;  Giganti, Francesco;  Wang, Rongpin;  Chen, Xin;  Wang, Xiaoxiao;  Palumbo, Diego;  Fu, Jia;  Li, Wuchao;  Li, Jing;  Zhong, Lianzhen;  De Cobelli, Francesco;  Ji, Jiafu;  Liu, Zaiyi;  Tian, Jie
View  |  Adobe PDF(2209Kb)  |  Favorite  |  View/Download:54/5  |  Submit date:2020/07/20
deep learning  locally advanced gastric cancer  lymph node metastasis  radiomic nomogram  
Radiomics in liver diseases: Current progress and future opportunities 期刊论文
LIVER INTERNATIONAL, 2020, 卷号: 40, 期号: 9, 页码: 2050-2063
Authors:  Wei, Jingwei;  Jiang, Hanyu;  Gu, Dongsheng;  Niu, Meng;  Fu, Fangfang;  Han, Yuqi;  Song, Bin;  Tian, Jie
Adobe PDF(872Kb)  |  Favorite  |  View/Download:49/0  |  Submit date:2020/08/03
data science  liver diseases  machine learning  precision medicine  radiologic technology  
基于深度学习的特发性肺纤维化HRCT影像特征识别与分割 学位论文
, 中国科学院自动化研究所: 中国科学院大学, 2020
Authors:  朱志敏
Adobe PDF(2686Kb)  |  Favorite  |  View/Download:135/1  |  Submit date:2020/07/28
深度学习,医学图像分类,特发性肺纤维化,医学图像分割,计算机辅助诊断  
乳腺癌近红外激发荧光成像方法研究和临床应用探索 学位论文
, 中国科学院自动化研究所: 中国科学院大学, 2020
Authors:  张崇
Adobe PDF(5418Kb)  |  Favorite  |  View/Download:116/1  |  Submit date:2020/06/03
近红外激发荧光成像  手术导航  图像处理  乳腺癌  
基于深度学习策略的超声多模态影像组学方法研究 学位论文
, 中国科学院大学自动化研究所: 中国科学院大学, 2020
Authors:  周辉
Adobe PDF(4006Kb)  |  Favorite  |  View/Download:106/4  |  Submit date:2020/05/28
超声成像  深度学习  影像组学  无创诊断  人工智能