CASIA OpenIR
(Note: the search results are based on claimed items)

Browse/Search Results:  1-6 of 6 Help

Filters        
Selected(0)Clear Items/Page:    Sort:
Robust C-Loss Kernel Classifiers 期刊论文
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 卷号: 29, 期号: 3, 页码: 510-522
Authors:  Xu, Guibiao;  Hu, Bao-Gang;  Principe, Jose C.
View  |  Adobe PDF(3169Kb)  |  Favorite  |  View/Download:52/23  |  Submit date:2018/01/05
Correntropy  Half-quadratic (Hq) Optimization  Kernel Classifier  Loss Function  
Robust support vector machines based on the rescaled hinge loss function 期刊论文
PATTERN RECOGNITION, 2017, 卷号: 63, 页码: 139-148
Authors:  Xu, Guibiao;  Cao, Zheng;  Hu, Bao-Gang;  Principe, Jose C.
Favorite  |  View/Download:53/0  |  Submit date:2017/02/14
Support Vector Machine  Robustness  Rescaled Hinge Loss  Half-quadratic Optimization  
Robust Bounded Logistic Regression in the Class Imbalance Problem 会议论文
2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, Canada, 2016-7-24至2016-7-29
Authors:  Xu, Guibiao(徐贵标);  Hu, Bao-Gang(胡包钢);  Principe, Jose
View  |  Adobe PDF(213Kb)  |  Favorite  |  View/Download:87/13  |  Submit date:2016/06/20
模式分类中的鲁棒损失函数的设计及其在不平衡数据中的应用 学位论文
, 北京: 中国科学院大学, 2016
Authors:  徐贵标
Adobe PDF(2509Kb)  |  Favorite  |  View/Download:150/5  |  Submit date:2016/06/20
异常样本  鲁棒损失函数  不平衡数据  代价敏感学习  代价缺失学习  
An Asymmetric Stagewise Least Square Loss Function for Imbalanced Classification 会议论文
2014 International Joint Conference on Neural Networks (IJCNN), 北京, 2014-7-6至2014-7-11
Authors:  Xu, Guibiao(徐贵标);  Hu, Bao-Gang(胡包钢);  Principe, Jose
View  |  Adobe PDF(768Kb)  |  Favorite  |  View/Download:58/15  |  Submit date:2016/06/20
Cost-Free Learning for Support Vector Machines with a Reject Option 会议论文
2013 IEEE 13th International Conference on Data Mining Workshops, Dallas, TX, USA, 2013-12-07至2013-12-10
Authors:  Xu, Guibiao(徐贵标);  Hu, Bao-Gang(胡包钢)
View  |  Adobe PDF(376Kb)  |  Favorite  |  View/Download:41/2  |  Submit date:2016/06/20
Abstaining Classification  Mutual Information  Support Vector Machines