CASIA OpenIR

Browse/Search Results:  1-6 of 6 Help

Filters                        
Selected(0)Clear Items/Page:    Sort:
DetNAS: Backbone Search for Object Detection 会议论文
, 加拿大温哥华, 2019-12-8
Authors:  Chen, Yukang;  Yang, Tong;  Zhang, Xiangyu;  Meng, Gaofeng;  Xiao, Xinyu;  Sun, Jian
View  |  Adobe PDF(1366Kb)  |  Favorite  |  View/Download:14/0  |  Submit date:2020/06/09
Weakly Semantic Guided Action Recognition 期刊论文
IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 卷号: 21, 期号: 10, 页码: 2504-2517
Authors:  Yu, Tingzhao;  Wang, Lingfeng;  Da, Cheng;  Gu, Huxiang;  Xiang, Shiming;  Pan, Chunhong
Adobe PDF(18774Kb)  |  Favorite  |  View/Download:100/32  |  Submit date:2019/05/15
Semantic guided module  action recognition  cross domain  3D convolution  attention model  
Progressive Sparse Local Attention for Video Object Detection 会议论文
, Seoul, Korea, 2019-10-27
Authors:  Chaoxu Guo;  Bin Fan;  Jie Gu;  Qian Zhang;  Shiming Xiang;  Veronique Prinet;  Chunhong Pan
View  |  Adobe PDF(1461Kb)  |  Favorite  |  View/Download:12/1  |  Submit date:2020/06/09
Blind image quality assessment via learnable attention-based pooling 期刊论文
PATTERN RECOGNITION, 2019, 卷号: 91, 页码: 332-344
Authors:  Gu, Jie;  Meng, Gaofeng;  Xiang, Shiming;  Pan, Chunhong
Adobe PDF(3081Kb)  |  Favorite  |  View/Download:219/91  |  Submit date:2019/05/15
Image quality assessment  Perceptual image quality  Visual attention  Convolutional neural network  Learnable pooling  
RENAS: Reinforced Evolutionary Neural Architecture Search 会议论文
, 美国洛杉矶长滩, 2019-6-16
Authors:  Chen, Yukang;  Meng, Gaofeng;  Zhang, Qian;  Xiang, Shiming;  Huang, Chang;  Mu, Lisen;  Wang, Xinggang
View  |  Adobe PDF(1137Kb)  |  Favorite  |  View/Download:9/0  |  Submit date:2020/06/09
Pseudo low rank video representation 期刊论文
PATTERN RECOGNITION, 2019, 卷号: 85, 期号: 1, 页码: 50-59
Authors:  Yu, Tingzhao;  Wang, Lingfeng;  Guo, Chaoxu;  Gu, Huxiang;  Xiang, Shiming;  Pan, Chunhong
Adobe PDF(1456Kb)  |  Favorite  |  View/Download:103/43  |  Submit date:2019/01/08
Pseudo low rank  Data driven  Low resolution  Action recognition