×
验证码:
换一张
Forgotten Password?
Stay signed in
China Science and Technology Network Pass Registration
×
China Science and Technology Network Pass Registration
Log In
Chinese
|
English
中国科学院自动化研究所机构知识库
Knowledge Commons of Institute of Automation,CAS
Log In
Register
ALL
ORCID
Title
Creator
Thesis Advisor
Subject Area
Keyword
Funding Project
Document Type
Source Publication
Conference Name
Indexed By
Publisher
Date Issued
Date Accessioned
MOST Discipline Catalogue
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
Search in the results
Collection
复杂系统管理与控制国... [1]
Authors
Yang Xu [1]
Document Type
Journal ar... [1]
Date Issued
2021 [1]
Language
英语 [1]
Source Publication
NEUROCOMPU... [1]
Funding Project
Beijing No... [1]
Beijing Sc... [1]
Field Fund... [1]
Key Basic ... [1]
Meituan Op... [1]
National K... [1]
More...
Indexed By
SCI [1]
Thesis Advisor
Funding Organization
Beijing No... [1]
Beijing Sc... [1]
Field Fund... [1]
Key Basic ... [1]
Meituan Op... [1]
National K... [1]
More...
×
Knowledge Map
CASIA OpenIR
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
QQ
Weibo
Feedback
Browse/Search Results:
1-1 of 1
Help
Filters
Funding Organization:Beijing Science and Technology Project
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Title Ascending
Title Descending
Issue Date Ascending
Issue Date Descending
Author Ascending
Author Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
AST-GNN: An attention-based spatio-temporal graph neural network for Interaction-aware pedestrian trajectory prediction
期刊论文
NEUROCOMPUTING, 2021, 卷号: 445, 页码: 298-308
Authors:
Zhou, Hao
;
Ren, Dongchun
;
Xia, Huaxia
;
Fan, Mingyu
;
Yang, Xu
;
Huang, Hai
Favorite
  |  
View/Download:101/0
  |  
Submit date:2021/08/15
Pedestrian trajectory prediction
Graph neural networks
Spatio-temporal graph
Graph attention