CASIA OpenIR

Browse/Search Results:  1-8 of 8 Help

Selected(0)Clear Items/Page:    Sort:
Exploring the predictive value of additional peritumoral regions based on deep learning and radiomics: A multicenter study 期刊论文
MEDICAL PHYSICS, 2021, 页码: 12
Authors:  Wu, Xiangjun;  Dong, Di;  Zhang, Lu;  Fang, Mengjie;  Zhu, Yongbei;  He, Bingxi;  Ye, Zhaoxiang;  Zhang, Minming;  Zhang, Shuixing;  Tian, Jie
Favorite  |  View/Download:12/0  |  Submit date:2021/05/06
deep learning  peritumor  radiomics  
MRI-Based Deep-Learning Model for Distant Metastasis-Free Survival in Locoregionally Advanced Nasopharyngeal Carcinoma 期刊论文
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 页码: 12
Authors:  Zhang, Lu;  Wu, Xiangjun;  Liu, Jing;  Zhang, Bin;  Mo, Xiaokai;  Chen, Qiuying;  Fang, Jin;  Wang, Fei;  Li, Minmin;  Chen, Zhuozhi;  Liu, Shuyi;  Chen, Luyan;  You, Jingjing;  Jin, Zhe;  Tang, Binghang;  Dong, Di;  Zhang, Shuixing
Favorite  |  View/Download:21/0  |  Submit date:2020/09/07
nasopharyngeal carcinoma  deep learning  distant metastasis-free survival  induction chemotherapy  chemoradiotherapy  
Deep learning -based multi -view fusion model for screening 2019 novel coronavirus pneumonia: A multicentre study 期刊论文
EUROPEAN JOURNAL OF RADIOLOGY, 2020, 卷号: 128, 期号: 109041, 页码: 9
Authors:  Wu, Xiangjun;  Hui, Hui;  Niu, Meng;  Li, Liang;  Wang, Li;  He, Bingxi;  Yang, Xin;  Li, Li;  Li, Hongjun;  Tian, Jie;  Zha, Yunfei
Adobe PDF(2315Kb)  |  Favorite  |  View/Download:29/1  |  Submit date:2020/07/20
Coronavirus disease 2019  Deep learning  Multi-view model  Computed tomography  
Deep learning -based multi -view fusion model for screening 2019 novel coronavirus pneumonia: A multicentre study 期刊论文
EUROPEAN JOURNAL OF RADIOLOGY, 2020, 卷号: 128, 期号: 109041, 页码: 9
Authors:  Wu, Xiangjun;  Hui, Hui;  Niu, Meng;  Li, Liang;  Wang, Li;  He, Bingxi;  Yang, Xin;  Li, Li;  Li, Hongjun;  Tian, Jie;  Zha, Yunfei
View  |  Adobe PDF(2315Kb)  |  Favorite  |  View/Download:44/5  |  Submit date:2020/07/20
Coronavirus disease 2019  Deep learning  Multi-view model  Computed tomography  
Novel radiomics features from CCTA images for the functional evaluation of significant ischaemic lesions based on the coronary fractional flow reserve score 期刊论文
INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2020, 页码: 12
Authors:  Hu, Wenchao;  Wu, Xiangjun;  Dong, Di;  Cui, Long-Biao;  Jiang, Min;  Zhang, Jibin;  Wang, Yabin;  Wang, Xinjiang;  Gao, Lei;  Tian, Jie;  Cao, Feng
Favorite  |  View/Download:47/0  |  Submit date:2020/07/06
Coronary artery disease  CT angiography  Radiomics  Myocardial ischaemia  
Prognostic value of the radiomics-based model in progression-free survival of hypopharyngeal cancer treated with chemoradiation 期刊论文
EUROPEAN RADIOLOGY, 2020, 卷号: 30, 期号: 2, 页码: 833-843
Authors:  Mo, Xiaokai;  Wu, Xiangjun;  Dong, Di;  Guo, Baoliang;  Liang, Changhong;  Luo, Xiaoning;  Zhang, Bin;  Zhang, Lu;  Dong, Yuhao;  Lian, Zhouyang;  Liu, Jing;  Pei, Shufang;  Huang, Wenhui;  Ouyang, Fusheng;  Tian, Jie;  Zhang, Shuixing
Favorite  |  View/Download:67/0  |  Submit date:2020/03/30
Head and neck cancer  Hypopharynx  Chemoradiotherapy  Recurrence  Prognosis  
Evaluation of Lymph Node Metastasis in Advanced Gastric Cancer Using Magnetic Resonance Imaging-Based Radiomics 期刊论文
FRONTIERS IN ONCOLOGY, 2019, 卷号: 9, 页码: 11
Authors:  Chen, Wujie;  Wang, Siwen;  Dong, Di;  Gao, Xuning;  Zhou, Kefeng;  Li, Jiaying;  Lv, Bin;  Li, Hailin;  Wu, Xiangjun;  Fang, Mengjie;  Tian, Jie;  Xu, Maosheng
Favorite  |  View/Download:44/0  |  Submit date:2020/03/30
lymph node metastasis  magnetic resonance imaging  diffusion-weighted imaging  advanced gastric cancer  radiomics  
Radiomic Nomogram Improves Preoperative T Category Accuracy in Locally Advanced Laryngeal Carcinoma 期刊论文
FRONTIERS IN ONCOLOGY, 2019, 卷号: 9, 页码: 8
Authors:  Wang, Fei;  Zhang, Bin;  Wu, Xiangjun;  Liu, Lizhi;  Fang, Jin;  Chen, Qiuying;  Li, Minmin;  Chen, Zhuozhi;  Li, Yueyue;  Dong, Di;  Tian, Jie;  Zhang, Shuixing
Favorite  |  View/Download:50/0  |  Submit date:2020/03/30
advanced laryngeal cancer  computed tomography  radiomics  T category  nomogram