Integrating supervised subspace criteria with restricted Boltzmann Machine for feature extraction
Xie, Guo-Sen; Zhang, Xu-Yao; Zhang, Yan-Ming; Liu, Cheng-Lin
2014
会议名称International Joint Conference on Neural Networks (IJCNN)
会议录名称Procceding of IJCNN 2014
会议日期2014
会议地点北京
摘要Restricted Boltzmann Machine (RBM) is a widely
used building-block in deep neural networks. However, RBM is
an unsupervised model which can not exploit the rich supervised
information of data. Therefore, we consider combining the
descriptive (generative) ability of RBM with the discriminative
ability of supervised subspace models, i.e., Fisher linear discriminant analysis (FDA), marginal Fisher analysis (MFA), and heat
kernel MFA (hkMFA). Specifically, the hidden layer of RBM is
regularized by the supervised subspace criteria, and the joint
learning model can then be efficiently optimized by gradient
descent and graph construction (used to define the scatter matrix
in the subspace models) on mini-batch data. Compared with the
traditional subspace models (FDA, MFA, hkMFA), the proposed
hybrid models are essentially nonlinear and can be optimized
by gradient descent instead of eigenvalue decomposition. More
importantly, traditional subspace models can only reduce the
dimensionality (because of linear transformation), while the
proposed models can also increase the dimensionality for better
class discrimination. Experiments on three databases demonstrate
that the proposed hybrid models outperform both RBM and their
counterpart subspace models (FDA, MFA, hkMFA) consistently.

关键词Rbm
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/11958
专题模式识别国家重点实验室_模式分析与学习
通讯作者Xie, Guo-Sen
推荐引用方式
GB/T 7714
Xie, Guo-Sen,Zhang, Xu-Yao,Zhang, Yan-Ming,et al. Integrating supervised subspace criteria with restricted Boltzmann Machine for feature extraction[C],2014.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
IJCNN14_paper.pdf(494KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xie, Guo-Sen]的文章
[Zhang, Xu-Yao]的文章
[Zhang, Yan-Ming]的文章
百度学术
百度学术中相似的文章
[Xie, Guo-Sen]的文章
[Zhang, Xu-Yao]的文章
[Zhang, Yan-Ming]的文章
必应学术
必应学术中相似的文章
[Xie, Guo-Sen]的文章
[Zhang, Xu-Yao]的文章
[Zhang, Yan-Ming]的文章
相关权益政策
暂无数据
收藏/分享
文件名: IJCNN14_paper.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。