Exploiting Hierarchical Dense Structures on Hypergraphs for Multi-Object Tracking
Wen, Longyin1,2; Lei, Zhen1,2; Lyu, Siwei3; Li, Stan Z.1,2; Yang, Ming-Hsuan4
2016-10-01
发表期刊IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
卷号38期号:10页码:1983-1996
文章类型Article
摘要Most multi-object tracking algorithms are developed within the tracking-by-detection framework that consider the pairwise appearance similarities between detection responses or tracklets within a limited temporal window, and thus less effective in handling long-term occlusions or distinguishing spatially close targets with similar appearance in crowded scenes. In this work, we propose an algorithm that formulates the multi-object tracking task as one to exploit hierarchical dense structures on an undirected hypergraph constructed based on tracklet affinity. The dense structures indicate a group of vertices that are inter-connected with a set of hyperedges with high affinity values. The appearance and motion similarities among multiple tracklets across the spatio-temporal domain are considered globally by exploiting high-order similarities rather than pairwise ones, thereby facilitating distinguish spatially close targets with similar appearance. In addition, the hierarchical design of the optimization process helps the proposed tracking algorithm handle long-term occlusions robustly. Extensive experiments on various challenging datasets of both multi-pedestrian and multi-face tracking tasks, demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods.
关键词Multi-object Tracking Tracklet Hierarchical Undirected Affinity Hypergraph Dense Structures
WOS标题词Science & Technology ; Technology
DOI10.1109/TPAMI.2015.2509979
关键词[WOS]MULTIPLE-TARGET TRACKING ; ROBUST FACE TRACKING ; MULTITARGET TRACKING ; APPEARANCE MODELS ; CRF MODEL ; GRAPH ; FRAMEWORK ; LINKING ; SCENES
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(61375037 ; National Science and Technology Support Program Project(2013BAK02B01) ; Chinese Academy of Sciences Project(KGZD-EW-102-2) ; AuthenMetric RD Funds ; US NSF(IIS-0953373 ; NSF(1149783) ; NSF IIS Grant(1152576) ; 61473291 ; CCF-1319800) ; 61572501 ; 61572536)
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000384240600005
引用统计
被引频次:10[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/12658
专题模式识别国家重点实验室_生物识别与安全技术研究
作者单位1.Chinese Acad Sci, Ctr Biometr & Secur Res, Beijing, Peoples R China
2.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing, Peoples R China
3.SUNY Albany, Dept Comp Sci, Albany, GA USA
4.Univ Calif Merced, Sch Engn, Merced, CA USA
推荐引用方式
GB/T 7714
Wen, Longyin,Lei, Zhen,Lyu, Siwei,et al. Exploiting Hierarchical Dense Structures on Hypergraphs for Multi-Object Tracking[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2016,38(10):1983-1996.
APA Wen, Longyin,Lei, Zhen,Lyu, Siwei,Li, Stan Z.,&Yang, Ming-Hsuan.(2016).Exploiting Hierarchical Dense Structures on Hypergraphs for Multi-Object Tracking.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,38(10),1983-1996.
MLA Wen, Longyin,et al."Exploiting Hierarchical Dense Structures on Hypergraphs for Multi-Object Tracking".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 38.10(2016):1983-1996.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Lywen-Hypergraph-TPA(739KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wen, Longyin]的文章
[Lei, Zhen]的文章
[Lyu, Siwei]的文章
百度学术
百度学术中相似的文章
[Wen, Longyin]的文章
[Lei, Zhen]的文章
[Lyu, Siwei]的文章
必应学术
必应学术中相似的文章
[Wen, Longyin]的文章
[Lei, Zhen]的文章
[Lyu, Siwei]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Lywen-Hypergraph-TPAMI-2016.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。