CASIA OpenIR  > 类脑智能研究中心
基于纹理差异视觉显著性的织物疵点检测算法
李春雷; 张兆翔; 刘洲峰; 廖亮; 赵全军; Chunlei Li
2014-09-17
发表期刊山东大学学报(工学版)
卷号44期号:4页码:1-8+30
其他摘要In order to effectively detect defect for fabirc image with variety of defects and complex texture, a novel fabric defect detection scheme based on textural difference-based visual saliency model was proposed, which considered the characteristics of fabric image and human visual perception. First, the test image was split into image blocks, and textural feature was extracted using LBP operator for each image block. Second, saliency was calculated by comparing their textural feature with the average texture feature. Finally, the threshold segmentation algorithm was used to localize the defect region. Comparing with the current saliency model, the proposed saliency model could effectively distinguish the defect. In addition, segmentation scheme was superior to the current defect detection algorithm in detection and localization.
关键词Fabric Defect Defect Detection Visual Saliency Local Binary Pattern Textural Difference Segment
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/13228
专题类脑智能研究中心
通讯作者Chunlei Li
推荐引用方式
GB/T 7714
李春雷,张兆翔,刘洲峰,等. 基于纹理差异视觉显著性的织物疵点检测算法[J]. 山东大学学报(工学版),2014,44(4):1-8+30.
APA 李春雷,张兆翔,刘洲峰,廖亮,赵全军,&Chunlei Li.(2014).基于纹理差异视觉显著性的织物疵点检测算法.山东大学学报(工学版),44(4),1-8+30.
MLA 李春雷,et al."基于纹理差异视觉显著性的织物疵点检测算法".山东大学学报(工学版) 44.4(2014):1-8+30.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[李春雷]的文章
[张兆翔]的文章
[刘洲峰]的文章
百度学术
百度学术中相似的文章
[李春雷]的文章
[张兆翔]的文章
[刘洲峰]的文章
必应学术
必应学术中相似的文章
[李春雷]的文章
[张兆翔]的文章
[刘洲峰]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。