CASIA OpenIR  > 类脑智能研究中心
Enhancing Cross-View Object Classification by Feature-Based Transfer Learning
Yi Mo; Zhaoxiang Zhang; Yunhong Wang
2012-11-11
会议名称International Conference on Pattern Recognition
会议录名称ICPR 2012
会议日期11-15 November 2012
会议地点Tsukuba, Japan
摘要Object classification is of vital importance to intelligent traffic surveillance. A big challenge is that shooting view changes in different scenes, which leads to sharp accuracy decrease since training and test samples do not follow the same distribution anymore. On the other hand, manual labeling training samples is time and labor consuming. We propose a feature-based transfer learning framework to gap the divergence of different domain distributions with scarce target view samples. Source view samples, following a different but relevant distribution, could be utilized to learn what a good classifier is like by structure learning. At the same time, small amount of target view samples could make a great contribution to reflect the target distribution. Experimental results indicate that our method outperforms traditional approaches when target samples are too scarce to build a strong classifier.
关键词Accuracy Vectors Training Surveillance Joints Manuals Pattern Recognition
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/13261
专题类脑智能研究中心
通讯作者Zhaoxiang Zhang
推荐引用方式
GB/T 7714
Yi Mo,Zhaoxiang Zhang,Yunhong Wang. Enhancing Cross-View Object Classification by Feature-Based Transfer Learning[C],2012.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yi Mo]的文章
[Zhaoxiang Zhang]的文章
[Yunhong Wang]的文章
百度学术
百度学术中相似的文章
[Yi Mo]的文章
[Zhaoxiang Zhang]的文章
[Yunhong Wang]的文章
必应学术
必应学术中相似的文章
[Yi Mo]的文章
[Zhaoxiang Zhang]的文章
[Yunhong Wang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。