Spatiotemporal Modeling and Implementation for Radar-Based Rainfall Estimation
Kuang, Qiuming1; Yang, Xuebing1; Zhang, Wensheng1; Zhang, Guoping2
2016-08-01
发表期刊IEEE GEOSCIENCE AND REMOTE SENSING LETTERS
卷号13期号:11页码:1601-1605
文章类型Article
摘要Radar-based rainfall estimation is one of the most important inputs for various meteorological applications. Although exciting progresses have been made in this area, accurate real-time rainfall estimation is still a significant opening topic that requires practical modeling. The research study presented in this letter improves rainfall estimation accuracy by proposing a random forest and linear chain conditional random-field-based spatiotemporal model (RANLIST). To apply this model for rainfall estimation, the implementing approach is presented. The advantages are listed as follows: 1) RANLIST improves rainfall estimation accuracy by exploiting both underlying local spatial structure of multiple radar reflectivity factors and time-series information of rain processes. 2) The time-series information of rain processes can be utilized in virtue of the presented implementation method. Experiments have been carried out over the radar-covered area of Quanzhou, China, in June and July 2014. Results show that RANLIST is superior to previous works.
关键词Radar Reflectivity Rain Processes Rainfall Estimation Spatiotemporal Model
WOS标题词Science & Technology ; Physical Sciences ; Technology
DOI10.1109/LGRS.2016.2597170
关键词[WOS]QUANTITATIVE PRECIPITATION ESTIMATION ; ALGORITHM ; NETWORK
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(61432008 ; 61532006 ; 61472423 ; 61305018)
WOS研究方向Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Geochemistry & Geophysics ; Engineering, Electrical & Electronic ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:000386255600003
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/13324
专题精密感知与控制研究中心_人工智能与机器学习
作者单位1.Chinese Acad Sci, Inst Automat, Res Ctr Precis Sensing & Control, Beijing 100190, Peoples R China
2.China Meteorol Adm, Publ Meteorol Serv Ctr, Beijing 100081, Peoples R China
推荐引用方式
GB/T 7714
Kuang, Qiuming,Yang, Xuebing,Zhang, Wensheng,et al. Spatiotemporal Modeling and Implementation for Radar-Based Rainfall Estimation[J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,2016,13(11):1601-1605.
APA Kuang, Qiuming,Yang, Xuebing,Zhang, Wensheng,&Zhang, Guoping.(2016).Spatiotemporal Modeling and Implementation for Radar-Based Rainfall Estimation.IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,13(11),1601-1605.
MLA Kuang, Qiuming,et al."Spatiotemporal Modeling and Implementation for Radar-Based Rainfall Estimation".IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 13.11(2016):1601-1605.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
spatiotemporal model(18082KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Kuang, Qiuming]的文章
[Yang, Xuebing]的文章
[Zhang, Wensheng]的文章
百度学术
百度学术中相似的文章
[Kuang, Qiuming]的文章
[Yang, Xuebing]的文章
[Zhang, Wensheng]的文章
必应学术
必应学术中相似的文章
[Kuang, Qiuming]的文章
[Yang, Xuebing]的文章
[Zhang, Wensheng]的文章
相关权益政策
暂无数据
收藏/分享
文件名: spatiotemporal modeling and implementation for radar-based rainfall estimation.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。