CASIA OpenIR  > 09年以前成果
Two-dimensional theories deduced from three-dimensional theory for a transversely isotropic body—II. Plane problems
Fei-Yue Wang
1991
发表期刊International Journal of Solids and Structures
卷号28期号:2页码:161-177
其他摘要Various two-dImensiona equations for plume problems have been deduced c~sterwtically
and directly from the three-dimensional theory of transversely isotropic bodies without any ad hoc assumptions. These equations can be used to construct new retined theorrcs for the plane problems.In the case of homogencous boundary canditions. the equations obtained are exact in the sense that a solution of them will satisfy all the balance equations of the three-dimensional theory. In the case of nonhomngencous boundary conditions. the approximate equations are accurate up to the sccond order terms with respect lo plane thickness. The results of this paper also verify the stress assumption in the classical plane stress problem.
关键词Two-dimensional Theories
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/14191
专题09年以前成果
通讯作者Fei-Yue Wang
推荐引用方式
GB/T 7714
Fei-Yue Wang. Two-dimensional theories deduced from three-dimensional theory for a transversely isotropic body—II. Plane problems[J]. International Journal of Solids and Structures,1991,28(2):161-177.
APA Fei-Yue Wang.(1991).Two-dimensional theories deduced from three-dimensional theory for a transversely isotropic body—II. Plane problems.International Journal of Solids and Structures,28(2),161-177.
MLA Fei-Yue Wang."Two-dimensional theories deduced from three-dimensional theory for a transversely isotropic body—II. Plane problems".International Journal of Solids and Structures 28.2(1991):161-177.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Monte Carlo analysis(742KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Fei-Yue Wang]的文章
百度学术
百度学术中相似的文章
[Fei-Yue Wang]的文章
必应学术
必应学术中相似的文章
[Fei-Yue Wang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Monte Carlo analysis of nonlinear vibration of rectangular plates with random geometric imperfections.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。