Off-Policy Integral Reinforcement Learning Method to Solve Nonlinear Continuous-Time Multiplayer Nonzero-Sum Games
Song, Ruizhuo1; Lewis, Frank L.2,3; Wei, Qinglai4
2017-03-01
发表期刊IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
卷号28期号:3页码:704-713
文章类型Article
摘要This paper establishes an off-policy integral reinforcement learning (IRL) method to solve nonlinear continuous-time (CT) nonzero-sum (NZS) games with unknown system dynamics. The IRL algorithm is presented to obtain the iterative control and off-policy learning is used to allow the dynamics to be completely unknown. Off-policy IRL is designed to do policy evaluation and policy improvement in the policy iteration algorithm. Critic and action networks are used to obtain the performance index and control for each player. The gradient descent algorithm makes the update of critic and action weights simultaneously. The convergence analysis of the weights is given. The asymptotic stability of the closed-loop system and the existence of Nash equilibrium are proved. The simulation study demonstrates the effectiveness of the developed method for nonlinear CT NZS games with unknown system dynamics.
关键词Adaptive Critic Designs Adaptive Dynamic Programming (Adp) Approximate Dynamic Programming Integral Reinforcement Learning (Irl) Nonlinear Systems Nonzero Sum (Nzs) Off-policy
WOS标题词Science & Technology ; Technology
DOI10.1109/TNNLS.2016.2582849
关键词[WOS]OPTIMAL TRACKING CONTROL ; ADAPTIVE OPTIMAL-CONTROL ; H-INFINITY CONTROL ; DIFFERENTIAL-GAMES ; UNKNOWN DYNAMICS ; FEEDBACK-CONTROL ; LINEAR-SYSTEMS ; CONTROL DESIGN ; OUTPUT DATA ; ALGORITHM
收录类别SCI
语种英语
项目资助者Directorate for Biological Sciences through the National Science Foundation(ECCS-1128050) ; National Natural Science Foundation of China(61304079 ; Fundamental Research Funds for the Central Universities(FRF-TP-15-056A3) ; State Key Laboratory of Management and Control for Complex Systems(20150104) ; Office of Naval Research(N00014-13-1-0562) ; Air Force Office of Scientific Research European Office of Aerospace Research and Development(13-3055) ; U.S. Army Research Office(W911NF-11-D-0001) ; China National Natural Science Foundation(61120106011) ; China Education Ministry Project 111(B08015) ; 61433004 ; 61374105)
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000395980500019
引用统计
被引频次:22[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/14397
专题复杂系统管理与控制国家重点实验室_平行控制
作者单位1.Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
2.Univ Texas Arlington, UTA Res Inst, Arlington, TX 76019 USA
3.Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110819, Peoples R China
4.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Song, Ruizhuo,Lewis, Frank L.,Wei, Qinglai. Off-Policy Integral Reinforcement Learning Method to Solve Nonlinear Continuous-Time Multiplayer Nonzero-Sum Games[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2017,28(3):704-713.
APA Song, Ruizhuo,Lewis, Frank L.,&Wei, Qinglai.(2017).Off-Policy Integral Reinforcement Learning Method to Solve Nonlinear Continuous-Time Multiplayer Nonzero-Sum Games.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,28(3),704-713.
MLA Song, Ruizhuo,et al."Off-Policy Integral Reinforcement Learning Method to Solve Nonlinear Continuous-Time Multiplayer Nonzero-Sum Games".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 28.3(2017):704-713.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Song, Ruizhuo]的文章
[Lewis, Frank L.]的文章
[Wei, Qinglai]的文章
百度学术
百度学术中相似的文章
[Song, Ruizhuo]的文章
[Lewis, Frank L.]的文章
[Wei, Qinglai]的文章
必应学术
必应学术中相似的文章
[Song, Ruizhuo]的文章
[Lewis, Frank L.]的文章
[Wei, Qinglai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。