CASIA OpenIR  > 模式识别国家重点实验室  > 多媒体计算与图形学
基于社交媒体的关联性用户属性推断
项连城1,2; 方全1,2; 桑基韬1,2; 徐常胜1,2; 路冬媛3
Source Publication软件学报
2015
Volume26Issue:Suppl.(2)Pages:145-154
Abstract
挖掘用户属性对用户建模、用户检索和个性化服务等具有十分重要的意义。已有的相关研究工作都是单独挖掘各种属性,而且忽略了各属性之间的相关关系。提出一种基于超图学习的用户属性推断的方法。在超图中,顶点表示社会媒体中的用户,超边表示用户产生的内容相似性与属性之间的关系。在建好的超图模型上,把用户属性挖掘形式化成一个正则化的标签相似传播问题,可以有效推断得到用户的各种属性。利用从Google+上收集的标记过全部属性的数据集进行了大量的实验,其结果表明了该方法在用户属性挖掘中的有效性。
Other AbstractInferring user attributes is important for user profiling, retrieval, and personalization. Most existing work infers user attribute independently and ignores the relations between attributes. In this work, a new method is proposed to infer user attributes via hypergraph learning. In the hypergragh, each vertex represents a user in the social media, and the hyperedges are used to capture the similarity relations of the user generated content and the relations between attributes. The user attributes inference is formalized into a regularization label similar propagation problem in the constructed hypergraph, which can effectively infer the users’ various attributes. Extensive experiments conducted on a collected dataset from Google+ with full attribute annotations demonstrate the effectiveness of the proposed approach in user attribute inference.
Keyword超图 用户属性挖掘 属性关系
Document Type期刊论文
Identifierhttp://ir.ia.ac.cn/handle/173211/14448
Collection模式识别国家重点实验室_多媒体计算与图形学
Corresponding Author路冬媛
Affiliation1.模式识别国家重点实验室(中国科学院 自动化研究所),北京 100190
2.China-Singapore Institute of Digital Media, Singapore 119615
3.National University of Singapore, Singapore 119615
Recommended Citation
GB/T 7714
项连城,方全,桑基韬,等. 基于社交媒体的关联性用户属性推断[J]. 软件学报,2015,26(Suppl.(2)):145-154.
APA 项连城,方全,桑基韬,徐常胜,&路冬媛.(2015).基于社交媒体的关联性用户属性推断.软件学报,26(Suppl.(2)),145-154.
MLA 项连城,et al."基于社交媒体的关联性用户属性推断".软件学报 26.Suppl.(2)(2015):145-154.
Files in This Item: Download All
File Name/Size DocType Version Access License
16-HHME19.pdf(931KB)期刊论文作者接受稿开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[项连城]'s Articles
[方全]'s Articles
[桑基韬]'s Articles
Baidu academic
Similar articles in Baidu academic
[项连城]'s Articles
[方全]'s Articles
[桑基韬]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[项连城]'s Articles
[方全]'s Articles
[桑基韬]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 16-HHME19.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.