CASIA OpenIR  > 智能感知与计算研究中心
Hierarchical Aesthetic Quality Assessment Using Deep Convolutional Neural Networks
Kao, Yueying1; Huang, Kaiqi1; Maybank, Steve2
2016
发表期刊Signal Processing: Image Communication
期号47页码:500-510
摘要Aesthetic image analysis has attracted much attention in recent years. However, assessing the aesthetic quality and assigning an aesthetic score are challenging problems. In this paper, we propose a novel framework for assessing the aesthetic quality of images. Firstly, we divide the images into three categories: “scene”, “object” and “texture”. Each category has an associated convolutional neural network (CNN) which learns the aesthetic features for the category in question. The object CNN is trained using the whole images and a salient region in each image. The texture CNN is trained using small regions in the original images. Furthermore, an A&C CNN is developed to simultaneously assess the aesthetic quality and identify the category for overall images. For each CNN, classification and regression models are developed separately to predict aesthetic class (high or low) and to assign an aesthetic score. Experimental results on a recently published large-scale dataset show that the proposed method can outperform the state-of-the-art methods for each category.
关键词Aesthetic Image Analysis Convolutional Neural Networks Scene Object Texture
收录类别SCI
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/14658
专题智能感知与计算研究中心
通讯作者Huang, Kaiqi
作者单位1.CRIPAC&NLPR,Institute of Automation, Chinese Academy of Sciences,University of Chinese Academy of Sciences,Beijing,China
2.Department of Computer Science and Information Systems,Birkbeck College,University of London,London,UK
推荐引用方式
GB/T 7714
Kao, Yueying,Huang, Kaiqi,Maybank, Steve. Hierarchical Aesthetic Quality Assessment Using Deep Convolutional Neural Networks[J]. Signal Processing: Image Communication,2016(47):500-510.
APA Kao, Yueying,Huang, Kaiqi,&Maybank, Steve.(2016).Hierarchical Aesthetic Quality Assessment Using Deep Convolutional Neural Networks.Signal Processing: Image Communication(47),500-510.
MLA Kao, Yueying,et al."Hierarchical Aesthetic Quality Assessment Using Deep Convolutional Neural Networks".Signal Processing: Image Communication .47(2016):500-510.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
SPIC2015_KAOYUEYING.(4734KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Kao, Yueying]的文章
[Huang, Kaiqi]的文章
[Maybank, Steve]的文章
百度学术
百度学术中相似的文章
[Kao, Yueying]的文章
[Huang, Kaiqi]的文章
[Maybank, Steve]的文章
必应学术
必应学术中相似的文章
[Kao, Yueying]的文章
[Huang, Kaiqi]的文章
[Maybank, Steve]的文章
相关权益政策
暂无数据
收藏/分享
文件名: SPIC2015_KAOYUEYING.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。