CASIA OpenIR  > 09年以前成果
Monte Carlo Analysis of Nonlinear Vibration of Rectangular Plates with Random Geometric Imperfections
Wang FY(王飞跃); Fei-Yue Wang
1990
发表期刊International Journal of Solids and Structures
卷号26期号:1页码:99-109
摘要The effect of random initial geometric imperfections on the vibration behavior of rectangular
plates is investigated in thii paper using a statistical method. The random initial geometric
imperfections of plates are described by Gaussiun random fields and simulated numerically using Elishoakoff's  method. Lindstedt-Poincark’sp erturbation technique is employed to solve Duffing's Equation with an additional quadratic spring term derived in the vibration analysis of imperfect rectangular plates. A Nonre Carlo analysis for simply supported plates is carried out in detail to illustrate the proposed approach. It is shown that the effect of random geometric imperfections on the vibration behavior of the plates can be described quantitatively in terms of the frequency reliability function and the hardening type probability.
关键词Random Geometric Imperfections Rectangular Plates
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/14902
专题09年以前成果
通讯作者Fei-Yue Wang
推荐引用方式
GB/T 7714
Wang FY,Fei-Yue Wang. Monte Carlo Analysis of Nonlinear Vibration of Rectangular Plates with Random Geometric Imperfections[J]. International Journal of Solids and Structures,1990,26(1):99-109.
APA Wang FY,&Fei-Yue Wang.(1990).Monte Carlo Analysis of Nonlinear Vibration of Rectangular Plates with Random Geometric Imperfections.International Journal of Solids and Structures,26(1),99-109.
MLA Wang FY,et al."Monte Carlo Analysis of Nonlinear Vibration of Rectangular Plates with Random Geometric Imperfections".International Journal of Solids and Structures 26.1(1990):99-109.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang FY(王飞跃)]的文章
[Fei-Yue Wang]的文章
百度学术
百度学术中相似的文章
[Wang FY(王飞跃)]的文章
[Fei-Yue Wang]的文章
必应学术
必应学术中相似的文章
[Wang FY(王飞跃)]的文章
[Fei-Yue Wang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。