CASIA OpenIR  > 模式识别国家重点实验室  > 视频内容安全
Diagnosing deep learning models for high accuracy age estimation from a single image
Xing, Junhang1; Li, Kai2; Hu, Weiming1,2; Yuan, Chunfeng1; Ling, Haibin3
2017-06-01
发表期刊PATTERN RECOGNITION
卷号66期号:1页码:106-116
文章类型Article
摘要Given a face image, the problem of age estimation is to predict the actual age from the visual appearance of the face. In this work, we investigate this problem by means of the deep learning techniques. We comprehensively diagnose the training and evaluating procedures of the deep learning models for age estimation on two of the largest datasets. Our diagnosis includes three different kinds of formulations for the age estimation problem using five most representative loss functions, as well as three different architectures to incorporate multi-task learning with race and gender classification. We start our diagnoses process from a simple baseline architecture from previous work. With appropriate problem formulation and loss function, we obtain state-of-the-art performance with the simple baseline architecture. By further incorporating our newly proposed deep multitask learning architecture, the age estimation performance is further improved with high-accuracy race and gender classification results obtained simultaneously. With all the insights gained from the diagnosing process, we finally build a deep multi-task age estimation model which obtains a MAE of 2.96 on the Morph II dataset and 5.75 on the WebFace dataset, both of which improve previous best results by a large margin.
关键词Age Estimation Deep Learning Multi-task Learning
WOS标题词Science & Technology ; Technology
DOI10.1016/j.patcog.2017.01.005
关键词[WOS]FACE IMAGES
收录类别SCI
语种英语
项目资助者973 Basic Research Program of China(2014CB349303) ; Natural Science Foundation of China(61472421, ; CAS(XDB02070003) ; U1636218 ; 61672519 ; 61303178)
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000397371800012
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/15074
专题模式识别国家重点实验室_视频内容安全
作者单位1.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Chinese Acad Sci, Inst Automat, CAS Ctr Excellence Brain Sci & Intelligence Techn, Beijing 100190, Peoples R China
3.Temple Univ, Dept Comp & Informat Sci, Philadelphia, PA 19122 USA
推荐引用方式
GB/T 7714
Xing, Junhang,Li, Kai,Hu, Weiming,et al. Diagnosing deep learning models for high accuracy age estimation from a single image[J]. PATTERN RECOGNITION,2017,66(1):106-116.
APA Xing, Junhang,Li, Kai,Hu, Weiming,Yuan, Chunfeng,&Ling, Haibin.(2017).Diagnosing deep learning models for high accuracy age estimation from a single image.PATTERN RECOGNITION,66(1),106-116.
MLA Xing, Junhang,et al."Diagnosing deep learning models for high accuracy age estimation from a single image".PATTERN RECOGNITION 66.1(2017):106-116.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
xing_Diagnosing deep(1247KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xing, Junhang]的文章
[Li, Kai]的文章
[Hu, Weiming]的文章
百度学术
百度学术中相似的文章
[Xing, Junhang]的文章
[Li, Kai]的文章
[Hu, Weiming]的文章
必应学术
必应学术中相似的文章
[Xing, Junhang]的文章
[Li, Kai]的文章
[Hu, Weiming]的文章
相关权益政策
暂无数据
收藏/分享
文件名: xing_Diagnosing deep learning models for high accuracy age estimation from a single image.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。