Moving Object Detection Using Tensor-Based Low-Rank and Saliently Fused-Sparse Decomposition
Hu, Wenrui; Yang, Yehui; Zhang, Wensheng; Xie, Yuan
2017-02-01
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING
卷号26期号:2页码:724-737
文章类型Article
摘要In this paper, we propose a new low-rank and sparse representation model for moving object detection. The model preserves the natural space-time structure of video sequences by representing them as three-way tensors. Then, it operates the low-rank background and sparse foreground decomposition in the tensor framework. On the one hand, we use the tensor nuclear norm to exploit the spatio-temporal redundancy of background based on the circulant algebra. On the other, we use the new designed saliently fused-sparse regularizer (SFS) to adaptively constrain the foreground with spatio-temporal smoothness. To refine the existing foreground smooth regularizers, the SFS incorporates the local spatio-temporal geometric structure information into the tensor total variation by using the 3D locally adaptive regression kernel (3D-LARK). What is more, the SFS further uses the 3D-LARK to compute the space-time motion saliency of foreground, which is combined with the l(1) norm and improves the robustness of foreground extraction. Finally, we solve the proposed model with globally optimal guarantee. Extensive experiments on challenging well-known data sets demonstrate that our method significantly outperforms the state-of-the-art approaches and works effectively on a wide range of complex scenarios.
关键词Moving Object Detection Tensor Nuclear Norm Tensor Total Variation Space-time Visual Saliency
WOS标题词Science & Technology ; Technology
DOI10.1109/TIP.2016.2627803
关键词[WOS]BACKGROUND SUBTRACTION ; VISUAL SURVEILLANCE ; REGULARIZATION ; FRAMEWORK ; RECOVERY ; ROBUST ; IMAGE
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(61402480 ; 61432008 ; 61472423 ; 61502495 ; 61532006)
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000404773100010
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/15244
专题精密感知与控制研究中心_人工智能与机器学习
作者单位Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Hu, Wenrui,Yang, Yehui,Zhang, Wensheng,et al. Moving Object Detection Using Tensor-Based Low-Rank and Saliently Fused-Sparse Decomposition[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2017,26(2):724-737.
APA Hu, Wenrui,Yang, Yehui,Zhang, Wensheng,&Xie, Yuan.(2017).Moving Object Detection Using Tensor-Based Low-Rank and Saliently Fused-Sparse Decomposition.IEEE TRANSACTIONS ON IMAGE PROCESSING,26(2),724-737.
MLA Hu, Wenrui,et al."Moving Object Detection Using Tensor-Based Low-Rank and Saliently Fused-Sparse Decomposition".IEEE TRANSACTIONS ON IMAGE PROCESSING 26.2(2017):724-737.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Final_Version.pdf(13016KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hu, Wenrui]的文章
[Yang, Yehui]的文章
[Zhang, Wensheng]的文章
百度学术
百度学术中相似的文章
[Hu, Wenrui]的文章
[Yang, Yehui]的文章
[Zhang, Wensheng]的文章
必应学术
必应学术中相似的文章
[Hu, Wenrui]的文章
[Yang, Yehui]的文章
[Zhang, Wensheng]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Final_Version.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。