CASIA OpenIR  > 智能感知与计算研究中心
Encyclopedia Enhanced Semantic Embedding for Zero-Shot Learning
Jia, Zhen1,2; Zhang, Junge1,2; Huang, Kaiqi1,2,3; Tan, Tieniu1,2,3
2017
会议名称International Conference on Image Processing (ICIP)
会议日期2017 September 17th-20th
会议地点Beijing, China
摘要There are tremendous object categories in the real world besides those in image datasets. Zero-shot learning aims to recognize image categories which are unseen in the training set. A large number of previous zero-shot learning models use word vectors of the class labels directly as category prototypes in the semantic embedding space. But word vectors cannot obtain the global knowledge of an image category sufficiently. In this paper, we propose a new encyclopedia enhanced semantic embedding model to promote the discriminative capability of word vector prototypes with the global knowledge of each image category. The proposed model extracts the TF-IDF key words from encyclopedia articles to acquire the global knowledge of each category. The convex combination of the key words' word vectors acts as the prototypes of the object categories. The prototypes of seen and unseen classes build up the embedding space where the nearest neighbour search is implemented to recognize the unseen images. The experiments show that the proposed method achieves the state-of-the-art performance on the challenging ImageNet Fall 2011 1k2hop dataset.
关键词Zero-shot Learning Image Classification
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/19662
专题智能感知与计算研究中心
作者单位1.CRIPAC & NLPR, Institute of Automation, Chinese Academy of Sciences
2.University of Chinese Academy of Sciences
3.CAS Center for Excellence in Brain Science and Intelligence Technology
推荐引用方式
GB/T 7714
Jia, Zhen,Zhang, Junge,Huang, Kaiqi,et al. Encyclopedia Enhanced Semantic Embedding for Zero-Shot Learning[C],2017.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
0001287.pdf(518KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jia, Zhen]的文章
[Zhang, Junge]的文章
[Huang, Kaiqi]的文章
百度学术
百度学术中相似的文章
[Jia, Zhen]的文章
[Zhang, Junge]的文章
[Huang, Kaiqi]的文章
必应学术
必应学术中相似的文章
[Jia, Zhen]的文章
[Zhang, Junge]的文章
[Huang, Kaiqi]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 0001287.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。