CASIA OpenIR  > 智能感知与计算研究中心
Deep Supervised Discrete Hashing
Qi Li; Zhenan Sun; Ran He; Tieniu Tan
2017-12
会议名称Neural Information Processing Systems (NIPS)
会议日期2017-12
会议地点Long Beach, America
摘要With the rapid growth of image and video data on the web, hashing has been extensively studied for image or video search in recent years. Benefiting from recent advances in deep learning, deep hashing methods have achieved promising results for image retrieval. However, there are some limitations of previous deep hashing methods (e.g., the semantic information is not fully exploited). In this paper, we develop a deep supervised discrete hashing algorithm based on the assumption that the learned binary codes should be ideal for classification. Both the pairwise label information and the classification information are used to learn the hash codes within one stream framework. We constrain the outputs of the last layer to be binary codes directly, which is rarely investigated in deep hashing algorithm. Because of the discrete nature of hash codes, an alternating minimization method is used to optimize the objective function. Experimental results have shown that our method outperforms current state-of-the-art methods on benchmark datasets.
收录类别EI
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/19693
专题智能感知与计算研究中心
作者单位Center for Research on Intelligent Perception and Computing, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
推荐引用方式
GB/T 7714
Qi Li,Zhenan Sun,Ran He,et al. Deep Supervised Discrete Hashing[C],2017.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
nips_2017.pdf(265KB)会议论文 开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Qi Li]的文章
[Zhenan Sun]的文章
[Ran He]的文章
百度学术
百度学术中相似的文章
[Qi Li]的文章
[Zhenan Sun]的文章
[Ran He]的文章
必应学术
必应学术中相似的文章
[Qi Li]的文章
[Zhenan Sun]的文章
[Ran He]的文章
相关权益政策
暂无数据
收藏/分享
文件名: nips_2017.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。