CASIA OpenIR  > 模式识别国家重点实验室  > 视频内容安全
Spatio-Temporal Self-Organizing Map Deep Network for Dynamic Object Detection from Videos
Du, Yang1,2; Yuan, Chunfeng1; Li, Bing1; Hu, Weiming1; Maybank, Stephen3
2017
会议名称IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
会议录名称2017 IEEE Conference on Computer Vision and Pattern Recognition
会议日期20170721-20170726
会议地点Honolulu, Hawaii
摘要
In dynamic object detection, it is challenging to construct an effective model to sufficiently characterize the spatial-temporal properties of the background. This paper proposes a new Spatio-Temporal Self-Organizing Map (STSOM) deep network to detect dynamic objects in complex scenarios. The proposed approach has several contributions: First, a novel STSOM shared by all pixels in a video frame is presented to efficiently model complex background. We exploit the fact that the motions of complex background have the global variation in the space and the local variation in the time, to train STSOM using the whole frames and the sequence of a pixel over time to tackle the variance of complex background. Second, a Bayesian parameter estimation based method is presented to learn
thresholds automatically for all pixels to filter out the background. Last, in order to model the complex background more accurately, we extend the single-layer STSOM to the deep network. Then the background is filtered out layer by layer. Experimental results on CDnet 2014 dataset demonstrate that the proposed STSOM deep network outperforms numerous recently proposed methods in the overall performance and in most categories of scenarios.
关键词Dynamic Object Detection Self-organizing Map Deep Network
学科领域模式识别与智能系统
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/19728
专题模式识别国家重点实验室_视频内容安全
通讯作者Yuan, Chunfeng
作者单位1.CAS Center for Excellence in Brain Science and Intelligence Technology, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
2.University of Chinese Academy of Sciences
3.Birkbeck College
推荐引用方式
GB/T 7714
Du, Yang,Yuan, Chunfeng,Li, Bing,et al. Spatio-Temporal Self-Organizing Map Deep Network for Dynamic Object Detection from Videos[C],2017.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Du_Spatio-Temporal_S(913KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Du, Yang]的文章
[Yuan, Chunfeng]的文章
[Li, Bing]的文章
百度学术
百度学术中相似的文章
[Du, Yang]的文章
[Yuan, Chunfeng]的文章
[Li, Bing]的文章
必应学术
必应学术中相似的文章
[Du, Yang]的文章
[Yuan, Chunfeng]的文章
[Li, Bing]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Du_Spatio-Temporal_Self-Organizing_Map_CVPR_2017_paper.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。