Handwritten Chinese Text Recognition Using Separable Multi-Dimensional Recurrent Neural Network
Wu YC(吴一超)1,2; Yin F(殷飞)1; Chen Z(陈卓)1,2; Liu CL(刘成林)1,2
2017
会议名称2017 14th IAPR International Conference on Document Analysis and Recognition
会议日期2017-11-13
会议地点日本京都
摘要The Long Short-Term Memory Recurrent Neural
Network (LSTM-RNN) has been demonstrated successful in
handwritten text recognition of Western and Arabic scripts. It
is totally segmentation free and can be trained directly from text
line images. However, the application of LSTM-RNNs (including
Multi-Dimensional LSTM-RNN (MDLSTM-RNN)) to Chinese
text recognition has shown limited success, even when training
them with large datasets and using pre-training on datasets
of other languages. In this paper, we propose a handwritten
Chinese text recognition method by using Separable MDLSTMRNN
(SMDLSTM-RNN) modules, which extract contextual information
in various directions, and consume much less computation
efforts and resources compared with the traditional MDLSTMRNN.
Experimental results on the ICDAR-2013 competition
dataset show that the proposed method performs significantly
better than the previous LSTM-based methods, and can compete
with the state-of-the-art systems.
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/19794
专题模式识别国家重点实验室_模式分析与学习
作者单位1.National Laboratory of Pattern Recognition, Institute of Automation of Chinese Academy of Sciences
2.University of Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Wu YC,Yin F,Chen Z,et al. Handwritten Chinese Text Recognition Using Separable Multi-Dimensional Recurrent Neural Network[C],2017.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
3586a079.pdf(287KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wu YC(吴一超)]的文章
[Yin F(殷飞)]的文章
[Chen Z(陈卓)]的文章
百度学术
百度学术中相似的文章
[Wu YC(吴一超)]的文章
[Yin F(殷飞)]的文章
[Chen Z(陈卓)]的文章
必应学术
必应学术中相似的文章
[Wu YC(吴一超)]的文章
[Yin F(殷飞)]的文章
[Chen Z(陈卓)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 3586a079.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。