CASIA OpenIR  > 模式识别国家重点实验室  > 视频内容安全
Joint Semantic and Latent Attribute Modelling for Cross-Class Transfer Learning
Peng PX(彭佩玺)1; Tian YH(田永鸿)1; Tao Xiang2; Wang YW(王耀威)1; Massimiliano Pontil3; Huang TJ(黄铁军)1
2017
发表期刊IEEE Transactions on Pattern Analysis and Machine Intelligence
期号99页码:1-1
摘要A number of vision problems such as zero-shot learning and person re-identification can be considered as cross-class transfer learning problems. As mid-level semantic properties shared cross different object classes, attributes have been studied extensively for knowledge-transfer across classes. Most previous attribute learning methods focus only on human-defined/nameable semantic attributes, whilst ignoring the fact there also exist undefined/latent shareable visual properties, or latent attributes. These latent attributes can be either discriminative or non-discriminative parts depending on whether they can contribute to an object recognition task. In this work, we argue that learning the latent attributes jointly with user-defined semantic attributes not only leads to better representation but also helps semantic attribute prediction. A novel dictionary learning model is proposed which decomposes the dictionary space into three parts corresponding to semantic, latent discriminative and latent background attributes respectively. Such a joint attribute learning model is then extended following a multi-task transfer learning framework to address a more challenging unsupervised domain adaptation problem, where annotations are only available on an auxiliary dataset and the target dataset is unlabelled. Extensive experiments show that our models, though being linear and thus extremely efficient to compute, produce state-of-the-art results on both zero-shot learning and person re-identification.
关键词Attribute Learning Dictionary Learning Multi-task Learning Zero-shot Learning Person Re-identification Transfer Learning
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/20212
专题模式识别国家重点实验室_视频内容安全
作者单位1.北京大学
2.Queen Mary, University of London
3.University College London
推荐引用方式
GB/T 7714
Peng PX,Tian YH,Tao Xiang,et al. Joint Semantic and Latent Attribute Modelling for Cross-Class Transfer Learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017(99):1-1.
APA Peng PX,Tian YH,Tao Xiang,Wang YW,Massimiliano Pontil,&Huang TJ.(2017).Joint Semantic and Latent Attribute Modelling for Cross-Class Transfer Learning.IEEE Transactions on Pattern Analysis and Machine Intelligence(99),1-1.
MLA Peng PX,et al."Joint Semantic and Latent Attribute Modelling for Cross-Class Transfer Learning".IEEE Transactions on Pattern Analysis and Machine Intelligence .99(2017):1-1.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Joint Semantic and L(2373KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Peng PX(彭佩玺)]的文章
[Tian YH(田永鸿)]的文章
[Tao Xiang]的文章
百度学术
百度学术中相似的文章
[Peng PX(彭佩玺)]的文章
[Tian YH(田永鸿)]的文章
[Tao Xiang]的文章
必应学术
必应学术中相似的文章
[Peng PX(彭佩玺)]的文章
[Tian YH(田永鸿)]的文章
[Tao Xiang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Joint Semantic and Latent Attribute Modelling for Cross-Class Transfer Learnin.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。