CASIA OpenIR  > 模式识别国家重点实验室  > 视频内容安全
COLOR CONSTANT DESCRIPTORS COMBINING IMAGE DERIVATIVE STRUCTURES
Hong Bao; Bing Li; De XU
2012
发表期刊Computing and Informatics
期号31页码:971–982
摘要Color constant image description is a fundamental problem in many computer vision applications. In this paper, the diagonal-offset model is adopted as reflectance model to get color constant image descriptors. This model makes the descriptors much more robust, and also fits the real world images very well. By introducing 3D moment invariants, this paper contributes to give an illumination independent descriptor generation framework. In detail, 0-, 1- and even higher order color constant descriptors can be generated from such framework. These descriptors can characterize n-order derivative image information. Furthermore, the combination thereof can characterize not only original image but also n-order edge image color information. The experiments on real image databases show that all these descriptors are robust to illumination variation and affine transformation, and perform very well for object recognition under various situations.
关键词Color Constant Descriptors
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/20387
专题模式识别国家重点实验室_视频内容安全
作者单位1.Beijing Jiaotong University
2.National Laboratory of Pattern Recognition (NLPR) Institute of Automation, Chinese Academy of Science, Beijing
推荐引用方式
GB/T 7714
Hong Bao,Bing Li,De XU. COLOR CONSTANT DESCRIPTORS COMBINING IMAGE DERIVATIVE STRUCTURES[J]. Computing and Informatics,2012(31):971–982.
APA Hong Bao,Bing Li,&De XU.(2012).COLOR CONSTANT DESCRIPTORS COMBINING IMAGE DERIVATIVE STRUCTURES.Computing and Informatics(31),971–982.
MLA Hong Bao,et al."COLOR CONSTANT DESCRIPTORS COMBINING IMAGE DERIVATIVE STRUCTURES".Computing and Informatics .31(2012):971–982.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hong Bao]的文章
[Bing Li]的文章
[De XU]的文章
百度学术
百度学术中相似的文章
[Hong Bao]的文章
[Bing Li]的文章
[De XU]的文章
必应学术
必应学术中相似的文章
[Hong Bao]的文章
[Bing Li]的文章
[De XU]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。