Robust Structural Sparse Tracking
Zhang, Tianzhu1,2; Xu, Changsheng1,2; Yang, Ming-Hsuan3
2018-01
发表期刊IEEE Transactions on Pattern Analysis and Machine Intelligence
期号pp页码:1-1
摘要Sparse representations have been applied to visual tracking by finding the best candidate region with minimal reconstruction error based on a set of target templates. However, most existing sparse trackers only consider holistic or local representations and do not make full use of the intrinsic structure among and inside target candidate regions, thereby making them less effective when similar objects appear at close proximity or under occlusion. In this paper, we propose a novel structural sparse representation, which not only exploits the intrinsic relationships among target candidate regions and local patches to learn their representations jointly, but also preserves the spatial structure among the local patches inside each target candidate region. For robust visual tracking, we take outliers resulting from occlusion and noise into account when searching for the best target region. Constructed within a Bayesian filtering framework, we show that the proposed algorithm accommodates most existing sparse trackers with respective merits. The formulated problem can be efficiently solved using an accelerated proximal gradient method that yields a sequence of closed form updates. Qualitative and quantitative evaluations on challenging benchmark datasets demonstrate that the proposed tracking algorithm performs favorably against several state-of-the-art methods.
关键词Visual Tracking Sparse Tracking Structural Modeling Sparse Representation
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/20470
专题模式识别国家重点实验室_多媒体计算与图形学
作者单位1.National Lab of Pattern Recognition, Institute of Automation, CAS
2.University of Chinese Academy of Sciences
3.EECS, University of California at Merced, Merced, California United States 95344
推荐引用方式
GB/T 7714
Zhang, Tianzhu,Xu, Changsheng,Yang, Ming-Hsuan. Robust Structural Sparse Tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2018(pp):1-1.
APA Zhang, Tianzhu,Xu, Changsheng,&Yang, Ming-Hsuan.(2018).Robust Structural Sparse Tracking.IEEE Transactions on Pattern Analysis and Machine Intelligence(pp),1-1.
MLA Zhang, Tianzhu,et al."Robust Structural Sparse Tracking".IEEE Transactions on Pattern Analysis and Machine Intelligence .pp(2018):1-1.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
pami17_rsst_final.pd(8609KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Tianzhu]的文章
[Xu, Changsheng]的文章
[Yang, Ming-Hsuan]的文章
百度学术
百度学术中相似的文章
[Zhang, Tianzhu]的文章
[Xu, Changsheng]的文章
[Yang, Ming-Hsuan]的文章
必应学术
必应学术中相似的文章
[Zhang, Tianzhu]的文章
[Xu, Changsheng]的文章
[Yang, Ming-Hsuan]的文章
相关权益政策
暂无数据
收藏/分享
文件名: pami17_rsst_final.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。