Opposition-based particle swarm optimization with adaptive mutation strategy
Dong, Wenyong1; Kang, Lanlan1,2; Zhang, Wensheng3
2017-09-01
发表期刊SOFT COMPUTING
卷号21期号:17页码:5081-5090
文章类型Article
摘要To solve the problem of premature convergence in traditional particle swarm optimization (PSO), an opposition-based particle swarm optimization with adaptive mutation strategy (AMOPSO) is proposed in this paper. In all the variants of PSO, the generalized opposition-based PSO (GOPSO), which introduces the generalized opposition-based learning (GOBL), is a prominent one. However, GOPSO may increase probability of being trapped into local optimum. Thus we introduce two complementary strategies to improve the performance of GOPSO: (1) a kind of adaptive mutation selection strategy (AMS) is used to strengthen its exploratory ability, and (2) an adaptive nonlinear inertia weight (ANIW) is introduced to enhance its exploitative ability. The rational principles are as follows: (1) AMS aims to perform local search around the global optimal particle in current population by adaptive disturbed mutation, so it can be beneficial to improve its exploratory ability and accelerate its convergence speed; (2) because it makes the PSO become rigid to keep fixed constant for the inertia weight, ANIW is used to adaptively tune the inertia weight to balance the contradiction between exploration and exploitation during its iteration process. Compared with several opposition-based PSOs on 14 benchmark functions, the experimental results show that the performance of the proposed AMOPSO algorithm is better or competitive to compared algorithms referred in this paper.
关键词Particle Swarm Optimization Adaptive Mutation Generalized Opposition-based Learning Adaptive Nonlinear Inertia Weight
WOS标题词Science & Technology ; Technology
DOI10.1007/s00500-016-2102-5
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(61170305 ; Natural Science Foundation of Guangdong Province of China(2014A030313454) ; Foundation of science, technology bureau of Liuzhou city of Guangxi Province of China(2014J020401) ; 61573157 ; 61562025)
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications
WOS记录号WOS:000408231900018
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/20721
专题精密感知与控制研究中心_人工智能与机器学习
作者单位1.Wuhan Univ, Comp Sch, Wuhan 430072, Hubei, Peoples R China
2.Jiangxi Univ Sci & Technol, Sch Apply Sci, Ganzhou 341000, Peoples R China
3.Chinese Acad Sci, State Key Lab Intelligent Control & Management Co, Inst Automat, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Dong, Wenyong,Kang, Lanlan,Zhang, Wensheng. Opposition-based particle swarm optimization with adaptive mutation strategy[J]. SOFT COMPUTING,2017,21(17):5081-5090.
APA Dong, Wenyong,Kang, Lanlan,&Zhang, Wensheng.(2017).Opposition-based particle swarm optimization with adaptive mutation strategy.SOFT COMPUTING,21(17),5081-5090.
MLA Dong, Wenyong,et al."Opposition-based particle swarm optimization with adaptive mutation strategy".SOFT COMPUTING 21.17(2017):5081-5090.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Dong, Wenyong]的文章
[Kang, Lanlan]的文章
[Zhang, Wensheng]的文章
百度学术
百度学术中相似的文章
[Dong, Wenyong]的文章
[Kang, Lanlan]的文章
[Zhang, Wensheng]的文章
必应学术
必应学术中相似的文章
[Dong, Wenyong]的文章
[Kang, Lanlan]的文章
[Zhang, Wensheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。