CASIA OpenIR  > 脑网络组研究中心
Discriminating Bipolar Disorder from Major Depression Using Whole-Brain Functional Connectivity: A Feature Selection Analysis with Svm-Foba Algorithm
Nanfeng Jie; Elizabeth A Osuch; Maohu Xiao; Xiaoying Ma; Michael Wammes; Tianzi Jiang; Sui Jing(隋婧); Vince D Calhoun
2015
会议名称2015 IEEE 25th International Workshop on Machine Learning for Signal Processing(MLSP 2015)
会议日期2015/9/17-20
会议地点Boston, MA, USA
摘要Multimodal fusion is an effective approach to better understand brain disease. To date, most current fusion approaches are unsupervised; there is need for a multivariate method that can adopt prior information to guide multimodal fusion. Here we proposed a novel supervised fusion model, called "MCCAR+jICA", which enables both identification of multimodal co-alterations and linking the covarying brain regions with a specific reference signal, e.g., cognitive scores. The proposed method has been validated on both simulated and real human brain data. Features from 3 modalities (fMRI, sMRI, dMRI) obtained from 147 schizophrenia patients and 147 age-matched healthy controls were included as fusion input, who participated in the Function Biomedical Informatics Research Network (FBIRN) Phase III study. Our aim was to investigate the group co-alterations seen in three types of MRI data that are also correlated with working memory performance. One joint IC was found both significantly group-discriminating (p=7.4E-06, 0.001, 7.0E-09) and highly correlated with working memory scores(r=0.296, 0.241, 0.301) and PANSS negative scores (r=-0.229, -0.276, -0.240) for fMRI, dMRI and sMRI, respectively. Given the simulation and FBIRN results, MCCAR+jICA is shown to be an effective multivariate approach to extract accurate and stable multimodal components associated with a particular measure of interest, and promises a wide application in identifying potential neuromarkers for mental disorders.
关键词Feature Selection Svm-foba Bipolar Disorder Major Depression Disorder Functional Connectivity
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/20792
专题脑网络组研究中心
作者单位Institute of Automation Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Nanfeng Jie,Elizabeth A Osuch,Maohu Xiao,et al. Discriminating Bipolar Disorder from Major Depression Using Whole-Brain Functional Connectivity: A Feature Selection Analysis with Svm-Foba Algorithm[C],2015.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Nanfeng Jie]的文章
[Elizabeth A Osuch]的文章
[Maohu Xiao]的文章
百度学术
百度学术中相似的文章
[Nanfeng Jie]的文章
[Elizabeth A Osuch]的文章
[Maohu Xiao]的文章
必应学术
必应学术中相似的文章
[Nanfeng Jie]的文章
[Elizabeth A Osuch]的文章
[Maohu Xiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。