CASIA OpenIR  > 模式识别国家重点实验室  > 视频内容安全
Spatio-Temporal Attention-Based LSTM Networks for 3D Action Recognition and Detection
Song, Sijie1; Lan, Cuiling2; Xing, Junliang4; Zeng, Wenjun2,3; Liu, Jiaying1
2018-07-01
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING
卷号27期号:7页码:3459-3471
文章类型Article
摘要Human action analytics has attracted a lot of attention for decades in computer vision. It is important to extract discriminative spatio-temporal features to model the spatial and temporal evolutions of different actions. In this paper, we propose a spatial and temporal attention model to explore the spatial and temporal discriminative features for human action recognition and detection from skeleton data. We build our networks based on the recurrent neural networks with long short-term memory units. The learned model is capable of selectively focusing on discriminative joints of skeletons within each input frame and paying different levels of attention to the outputs of different frames. To ensure effective training of the network for action recognition, we propose a regularized cross-entropy loss to drive the learning process and develop a joint training strategy accordingly. Moreover, based on temporal attention, we develop a method to generate the action temporal proposals for action detection. We evaluate the proposed method on the SBU Kinect Interaction data set, the NTU RGB + D data set, and the PKU-MMD data set, respectively. Experiment results demonstrate the effectiveness of our proposed model on both action recognition and action detection.
关键词Spatio Attention Temporal Attention Action Recognition Action Detection Skeleton Data
WOS标题词Science & Technology ; Technology
DOI10.1109/TIP.2018.2818328
关键词[WOS]MOTION ; MODEL
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(61772043 ; Microsoft Research Asia Fund(FY17-RES-THEME-013) ; CCF-Tencent Open Research Fund ; 61672519)
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000430594300008
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/22007
专题模式识别国家重点实验室_视频内容安全
作者单位1.Peking Univ, Inst Comp Sci & Technol, Beijing 100080, Peoples R China
2.Microsoft Res Asia, Beijing 100080, Peoples R China
3.Microsoft Res Asia, Senior Leadership Team, Beijing 100080, Peoples R China
4.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Song, Sijie,Lan, Cuiling,Xing, Junliang,et al. Spatio-Temporal Attention-Based LSTM Networks for 3D Action Recognition and Detection[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2018,27(7):3459-3471.
APA Song, Sijie,Lan, Cuiling,Xing, Junliang,Zeng, Wenjun,&Liu, Jiaying.(2018).Spatio-Temporal Attention-Based LSTM Networks for 3D Action Recognition and Detection.IEEE TRANSACTIONS ON IMAGE PROCESSING,27(7),3459-3471.
MLA Song, Sijie,et al."Spatio-Temporal Attention-Based LSTM Networks for 3D Action Recognition and Detection".IEEE TRANSACTIONS ON IMAGE PROCESSING 27.7(2018):3459-3471.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Song, Sijie]的文章
[Lan, Cuiling]的文章
[Xing, Junliang]的文章
百度学术
百度学术中相似的文章
[Song, Sijie]的文章
[Lan, Cuiling]的文章
[Xing, Junliang]的文章
必应学术
必应学术中相似的文章
[Song, Sijie]的文章
[Lan, Cuiling]的文章
[Xing, Junliang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。