Efficient Group-n Encoding and Decoding for Facial Age Estimation
Zichang Tan1,2; Jun Wan1; Zhen Lei1; Ruicong Zhi3; Guodong Guo4; Stan Z. Li1
2018-11
发表期刊IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
卷号40期号:11页码:2610-2622
摘要none; Different ages are closely related especially among the adjacent ages because aging is a slow and extremely non-stationary process with much randomness. To explore the relationship between the real age and its adjacent ages, an age group-n encoding (AGEn) method is proposed in this paper. In our model, adjacent ages are grouped into the same group and each age corresponds to n groups. The ages grouped into the same group would be regarded as an independent class in the training stage. On this basis, the original age estimation problemcan be transformed into a series of binary classification sub-problems. And a deep Convolutional Neural Networks (CNN) with multiple classifiers is designed to cope with such sub-problems. Later, a Local Age Decoding (LAD) strategy is further presented to accelerate the prediction process, which locally decodes the estimated age value from ordinal classifiers. Besides, to alleviate the imbalance data learning problem of each classifier, a penalty factor is inserted into the unified objective function to favor the minority class. To compare with state-of-the-art methods, we evaluate the proposed method on FG-NET, MORPH II, CACD and Chalearn LAP 2015 databases and it achieves the best performance.
关键词Age Estimation Deep Learning Convolutional Neural Network Age Grouping Data Imbalance
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/22024
专题模式识别国家重点实验室_生物识别与安全技术研究
作者单位1.Center for Biometrics and Security Research & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
2.University of Chinese Academy of Sciences
3.School of Computer and Communication Engineering, University of Science and Technology Beijing
4.Lane Department of Computer Science and Electrical Engineering, West Virginia University
推荐引用方式
GB/T 7714
Zichang Tan,Jun Wan,Zhen Lei,et al. Efficient Group-n Encoding and Decoding for Facial Age Estimation[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2018,40(11):2610-2622.
APA Zichang Tan,Jun Wan,Zhen Lei,Ruicong Zhi,Guodong Guo,&Stan Z. Li.(2018).Efficient Group-n Encoding and Decoding for Facial Age Estimation.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,40(11),2610-2622.
MLA Zichang Tan,et al."Efficient Group-n Encoding and Decoding for Facial Age Estimation".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 40.11(2018):2610-2622.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
08141981.pdf(1015KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zichang Tan]的文章
[Jun Wan]的文章
[Zhen Lei]的文章
百度学术
百度学术中相似的文章
[Zichang Tan]的文章
[Jun Wan]的文章
[Zhen Lei]的文章
必应学术
必应学术中相似的文章
[Zichang Tan]的文章
[Jun Wan]的文章
[Zhen Lei]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 08141981.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。