CASIA OpenIR  > 脑图谱与类脑智能实验室  > 脑网络组研究
A biologically plausible supervised learning method for spiking neural networks using the symmetric STDP rule
Hao, Yunzhe1,2; Huang, Xuhui1; Dong, Meng1; Xu, Bo1,2,3
发表期刊NEURAL NETWORKS
ISSN0893-6080
2020
卷号121期号:2页码:387-395
摘要

Spiking neural networks (SNNs) possess energy-efficient potential due to event-based computation. However, supervised training of SNNs remains a challenge as spike activities are non-differentiable. Previous SNNs training methods can be generally categorized into two basic classes, i.e., backpropagation-like training methods and plasticity-based learning methods. The former methods are dependent on energy-inefficient real-valued computation and non-local transmission, as also required in artificial neural networks (ANNs), whereas the latter are either considered to be biologically implausible or exhibit poor performance. Hence, biologically plausible (bio-plausible) high-performance supervised learning (SL) methods for SNNs remain deficient. In this paper, we proposed a novel bioplausible SNN model for SL based on the symmetric spike-timing dependent plasticity (sym-STDP) rule found in neuroscience. By combining the sym-STDP rule with bio-plausible synaptic scaling and intrinsic plasticity of the dynamic threshold, our SNN model implemented SL well and achieved good performance in the benchmark recognition task (MNIST dataset). To reveal the underlying mechanism of our SL model, we visualized both layer-based activities and synaptic weights using the t-distributed stochastic neighbor embedding (t-SNE) method after training and found that they were well clustered, thereby demonstrating excellent classification ability. Furthermore, to verify the robustness of our model, we trained it on another more realistic dataset (Fashion-MNIST), which also showed good performance. As the learning rules were bio-plausible and based purely on local spike events, our model could be easily applied to neuromorphic hardware for online training and may be helpful for understanding SL information processing at the synaptic level in biological neural systems. (C) 2019 Elsevier Ltd. All rights reserved.

关键词Spiking neural networks Dopamine-modulated spike-timing dependent plasticity Pattern recognition Supervised learning Biologically plausibility
DOI10.1016/j.neunet.2019.09.007
关键词[WOS]TIMING-DEPENDENT PLASTICITY ; DOPAMINERGIC MODULATION ; VISUAL-CORTEX ; HOMEOSTASIS ; REWARD ; ENERGY
收录类别SCI
语种英语
资助项目Strategic Priority Research Program of the Chinese Academy of Sciences[XDB32070000] ; Beijing Brain Science Project, China[Z181100001518006] ; National Natural Science Foundation of China[11505283] ; National Natural Science Foundation of China[11505283] ; Beijing Brain Science Project, China[Z181100001518006] ; Strategic Priority Research Program of the Chinese Academy of Sciences[XDB32070000]
WOS研究方向Computer Science ; Neurosciences & Neurology
WOS类目Computer Science, Artificial Intelligence ; Neurosciences
WOS记录号WOS:000500922700030
出版者PERGAMON-ELSEVIER SCIENCE LTD
七大方向——子方向分类类脑模型与计算
引用统计
被引频次:80[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/29428
专题脑图谱与类脑智能实验室_脑网络组研究
复杂系统认知与决策实验室_听觉模型与认知计算
通讯作者Huang, Xuhui; Xu, Bo
作者单位1.Chinese Acad Sci, Inst Automat, Res Ctr Brain Inspired Intelligence, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Chinese Acad Sci, CAS Ctr Excellence Brain Sci & Intelligence Techn, Beijing 100190, Peoples R China
第一作者单位中国科学院自动化研究所
通讯作者单位中国科学院自动化研究所
推荐引用方式
GB/T 7714
Hao, Yunzhe,Huang, Xuhui,Dong, Meng,et al. A biologically plausible supervised learning method for spiking neural networks using the symmetric STDP rule[J]. NEURAL NETWORKS,2020,121(2):387-395.
APA Hao, Yunzhe,Huang, Xuhui,Dong, Meng,&Xu, Bo.(2020).A biologically plausible supervised learning method for spiking neural networks using the symmetric STDP rule.NEURAL NETWORKS,121(2),387-395.
MLA Hao, Yunzhe,et al."A biologically plausible supervised learning method for spiking neural networks using the symmetric STDP rule".NEURAL NETWORKS 121.2(2020):387-395.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hao, Yunzhe]的文章
[Huang, Xuhui]的文章
[Dong, Meng]的文章
百度学术
百度学术中相似的文章
[Hao, Yunzhe]的文章
[Huang, Xuhui]的文章
[Dong, Meng]的文章
必应学术
必应学术中相似的文章
[Hao, Yunzhe]的文章
[Huang, Xuhui]的文章
[Dong, Meng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。