CASIA OpenIR  > 复杂系统认知与决策实验室  > 飞行器智能技术
高超声速飞行器不确定性抑制控制方法研究
孙金林
2021-05-20
Pages170
Subtype博士
Abstract

高超声速飞行器指在临近空间能够以超过 5 马赫的速度飞行的一类有翼或无翼飞行器。由于具有飞行速度快、飞行范围广、反应时间短等突出优势,高超声速飞行器受到全球研究人员的广泛关注。为实现高超声速飞行,设计高性能的飞行控制系统是其关键技术之一。吸气式高超声速飞行器采用独特的机体—发动机一体化设计,具有机身弹性效应,并处于复杂多变的飞行环境下。因此,吸气式高超声速飞行器是一个具有强非线性、强耦合和强不确定性特征的动力学系统,这些特性给飞行控制系统设计带来了特有的困难与挑战。

本文以吸气式高超声速飞行器为研究对象,主要考虑飞行器巡航控制系统中广泛存在的模型不确定性、弹性不确定性、外部扰动、高频测量噪声等不确定性因素。其中模型不确定性、弹性不确定性以及外部扰动可被一同视作集总干扰。针对上述多源不确定性问题,本文系统性地开展高超声速飞行器不确定性抑制控制方法研究。本文的主要工作与创新点如下:

(1) 建立吸气式高超声速飞行器纵向动力学模型,并从控制角度对高超声速飞行器动态模型进行特性分析,包括开环响应特性、非线性与强耦合特性、强不确定性特性,接着从模型特性出发凝练出不确定性抑制关键问题。

(2) 针对高超声速飞行器的模型不确定性与部分状态不可测问题,提出基于区间二型模糊系统的有限时间自适应输出反馈控制方案,实现飞行器的高精度跟踪控制,并且保证航迹角与攻角观测误差的固定时间收敛以及闭环跟踪误差的有限时间收敛。

(3) 针对高超声速飞行器的集总干扰快速观测问题,提出基于固定时间扰动观测器的主动抗干扰控制方案,保证集总干扰的快速观测与抑制,并在此基础上实现飞行器的强鲁棒性巡航控制。一方面,新型扰动观测器将在固定时间内快速收敛,提升飞控系统抗干扰性能;另一方面,本文所设计的非光滑反步控制器可实现闭环误差的有限时间收敛。

(4) 针对高超声速飞行器的集总干扰优化补偿问题,提出基于条件干扰补偿技术的自抗扰控制方案,仅对特定的集总干扰进行选择性补偿,并利用集总干扰对跟踪控制系统的有益作用,相比传统抗干扰控制取得了更优的跟踪性能。本文揭示了传统二自由度干扰全补偿控制方法的局限性,并探索了特定场景下集总干扰对飞行控制系统带来的有利作用。

(5) 针对高超声速飞行器的高频测量噪声抑制问题,提出基于增广观测器的测量噪声抑制控制方案,有效滤除高频测量噪声,实现飞行器在模型不确定性、外部干扰、测量噪声同时存在的极端运行工况下的高精度控制。本方案实现了滤波与干扰观测的一体化设计,并保证了闭环误差的固定时间收敛。

以上各控制方案均通过仿真测试验证了其有效性与优越性。

综上所述,本文针对吸气式高超声速飞行器巡航阶段中的多源不确定性问题,提出一系列不确定性抑制控制方案以提高控制系统的精度与鲁棒性,为高超声速飞行器控制工程实践提供一定的理论支撑。此外,本文针对高超声速飞行器实际工程问题所设计的控制方案催生了新型控制方法,并且这些控制方法可推广到一般化的动态系统中,为相关理论研究提供必要借鉴。

Other Abstract

Hypersonic vehicles refer to winged or wingless vehicles whose speed is more than Mach 5 in near space. Due to the advantages of astonishing speed, wide flight envelope, and short reaction time, hypersonic vehicles have attracted researchers worldwide. To realize hypersonic flight, designing a high-performance flight control system is one of the key technologies. Air-breathing hypersonic vehicle (AHV) adopts a unique airframe-engine-integrated structure and works in a complex flight environment. Besides, flexibility uncertainties appear in the AHV system. Therefore, AHV is a dynamic system with the features of nonlinearity, strong couplings, and multiple uncertainties. These features bring challenges to the flight control system design for AHV.

In this dissertation, the uncertainty factors that widely exist in the cruise control system of AHV, including model uncertainties, flexibility uncertainties, external disturbances, and high-frequency measurement noises, are mainly considered. Actually, the model uncertainties, flexibility uncertainties, and external disturbances can be regarded as lumped disturbances together. To deal with the multiple uncertainties in the AHV control system, the dissertation focuses on the control methods design for AHV with uncertainty suppression. The main contributions and novelties of this dissertation are summarized as follows:

(1) The longitudinal dynamic model of AHV is established firstly. The characteristics of the AHV model are analyzed from the control point of view, including the open-loop response, nonlinearity, strong couplings, and multiple uncertainties. Further, the key problems concerning uncertainty suppression are obtained according to the model characteristics.

(2) To deal with the model uncertainties and partial-state immeasurability of the AHV system, an interval type-2 fuzzy system-based finite-time adaptive output-feedback control scheme is proposed to realize the high-precision tracking control of AHV. In addition, the proposed control scheme can guarantee the fixed-time convergence of the estimation errors and the finite-time convergence of the closed-loop tracking errors.

(3) To deal with the lumped disturbance estimation for AHV, a fixed-time disturbance observer-based control scheme is proposed to realize the fast estimation of lumped disturbances and the robust cruise control of AHV. On the one hand, the novel disturbance observer will converge rapidly in a fixed time to improve the anti-disturbance performance of the flight control system. On the other hand, the designed nonsmooth backstepping controller can achieve finite-time convergence of the closed-loop errors.

(4) To deal with the optimized lumped disturbance compensation for AHV, a novel conditional disturbance negation-based active disturbance rejection control scheme is proposed. The control scheme only selectively compensates the specific lumped disturbances and makes use of the beneficial effects of the lumped disturbances. Compared with traditional anti-disturbance control methods, it achieves better tracking performances of AHV. The dissertation reveals the limitations of the traditional two-degree-of-freedom full disturbance compensation-based control methods. It explores the beneficial effects of the lumped disturbances on the flight control system in specific scenarios.

(5) To deal with the high-frequency measurement noises in the AHV system, two augmented observer-based control schemes with measurement noise suppression are proposed, which can effectively filter out the high-frequency measurement noises and realize the high-precision control of AHV under extreme operating conditions. The proposed control scheme realizes the integrated design of filtering and lumped disturbance estimation and ensures the fixed-time convergence of the closed-loop errors.

Representative simulations verify the effectiveness and superiority of the above control schemes.

In conclusion, this dissertation presents a series of flight control schemes with uncertainty suppression for AHVs, which improves the accuracy and robustness of the control systems. In addition, the obtained results of the dissertation offer certain theoretical support for the control engineering practice of AHV. Furthermore, the control schemes designed in this dissertation for practical AHVs give birth to some new control methods. These control methods can be extended to general dynamic systems, which provide necessary references for the relevant theoretical research.

Keyword高超声速飞行器 不确定性抑制 自适应模糊控制 抗干扰控制 有限时间控制
Language中文
Sub direction classification智能控制
Document Type学位论文
Identifierhttp://ir.ia.ac.cn/handle/173211/44994
Collection复杂系统认知与决策实验室_飞行器智能技术
Recommended Citation
GB/T 7714
孙金林. 高超声速飞行器不确定性抑制控制方法研究[D]. 北京. 中国科学院大学,2021.
Files in This Item:
File Name/Size DocType Version Access License
高超声速飞行器不确定性抑制控制方法研究.(18036KB)学位论文 暂不开放CC BY-NC-SA
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[孙金林]'s Articles
Baidu academic
Similar articles in Baidu academic
[孙金林]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[孙金林]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.