基于深度强化学习的主动目标检测方法研究 | |
许诺![]() | |
2022-11-29 | |
Pages | 122 |
Subtype | 博士 |
Abstract | 主动目标检测旨在利用成像控制、图像处理等技术,模拟人类视觉系统加工信息的形式,通过连续的多步决策方式来处理图像序列,智能化获取关键情报,从而更好地服务于传统被动目标检测。该任务在对地观测系统、人机交互、机器人等众多领域都有着重要的研究意义与应用价值。目前,传统的目标检测方法由于存在被动性而受到一定的限制:(1)无法自主选择最优参数配置;(2)很难适应变化的环境;(3)不能及时利用评价反馈进行反思与规划。因此,针对被动目标检测存在的问题与不足,本文首先给出了主动性的定义并提出了主动目标检测框架:主动性指的是通过序列决策方法自适应地调整视觉系统中的某一项或几项参数配置,包括图像属性配置、包围框位置与形状、相机位置与姿态、网络超参数配置等,以提高视觉任务的最终性能。主动目标检测框架由三部分模块组成,包括成像模块、相机控制模块和目标检测模块,能够同时完成视觉感知与决策认知的任务。本系列研究工作将基于深度强化学习对主动性进行建模,针对主动目标检测框架提出四种主动配置学习策略。本文的主要贡献归纳如下: 1、提出一种目标检测模块中的包围框学习策略。为了解决早期包围框学习方法中初始与最终状态不够精确的问题,智能体执行一种由粗到精的动态注视算法用于目标检测,分“瞄准”和“击中”两步。其中,“瞄准”表示最初的一瞥,可以定位所有物体的中心点,给出初始框的大致位置;“击中”指仔细观察,能使用序列决策方法动态调整初始框以获得紧凑包围框,并且预测了角点用作最终微调。与已有包围框决策方法的区别在于,本方法以关键点作为载体,实现由中心到角点的检测方式,使得本方法既具有关键点检测器的识别精度,又具有由粗到精的类人视觉模式。在多个公开数据集中证明了算法的价值。 |
Other Abstract | Active Object Detection (AOD) aims to apply imaging control, image processing and other technologies to simulate human vision, and process image sequences through multi-step decision-making to obtain key information, thus better serving traditional passive object detection. This task has both theoretical significance and application value in many fields such as earth observation, human-computer interaction, and robotics. Traditional detectors are subject to three restrictions due to their passivity: (1) Inability to select the optimal configuration independently; (2) Difficulty adapting to changing environment; (3) Inability to use evaluation feedback in time for reflection and planning. Therefore, in view of the shortcomings of passive object detection, the concept of activeness and the framework of AOD are defined firstly: activeness refers to the adaptive adjustment of the parameter configurations in the visual system, e.g., image attribute, bounding box position and shape, camera position and posture, network hyper-parameter, through a serialized decision-making to improve the final performance. The framework of AOD includes imaging module, camera control module and object detection module, and completes the tasks of visual perception and decision cognition. Our research models the activeness based on deep reinforcement learning and proposes four active configuration learning strategies for the framework of AOD. The contributions are summarized as follows: 1. A bounding box learning strategy in object detection module is proposed. In order to solve the problem of inaccurate initial and final states in early bounding box learning methods, our agent applies a dynamic coarse-to-fine gaze for object detection, which is divided into two steps, AIM and HIT. AIM means first glance, which locates the center points of all objects and the approximate positions of the initial boxes; HIT means careful observation, which dynamically adjusts the initial boxes to obtain compact bounding boxes by sequence decision, and predicts the corner points for refinement. The difference from the existing decision-making detectors is that our method introduces the key points as the carrier to realize the detection from centers to corners, thus achieving a human-like high-performance visual mode. The value of our method is proven on public datasets. |
Keyword | 目标检测 深度强化学习 主动目标检测 深度学习 |
Language | 中文 |
Sub direction classification | 目标检测、跟踪与识别 |
planning direction of the national heavy laboratory | 视觉信息处理 |
Document Type | 学位论文 |
Identifier | http://ir.ia.ac.cn/handle/173211/50606 |
Collection | 毕业生_博士学位论文 |
Recommended Citation GB/T 7714 | 许诺. 基于深度强化学习的主动目标检测方法研究[D],2022. |
Files in This Item: | ||||||
File Name/Size | DocType | Version | Access | License | ||
毕业论文-许诺.pdf(9588KB) | 学位论文 | 限制开放 | CC BY-NC-SA |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment