CASIA OpenIR  > 毕业生  > 博士学位论文
人脸跟踪与识别的研究
其他题名Study on Face Tracking and Recognition
刘青山
学位类型工学博士
导师马颂德
2003-03-01
学位授予单位中国科学院研究生院
学位授予地点中国科学院自动化研究所
学位专业模式识别与智能系统
关键词人脸跟踪 人脸识别 均值漂移 子空间分析 核密度估计 核fishcr判决分析 Face Tracking Face Recognition Mean Shift Subspace Analysis Kernel Density Estimation Kernel Fisher Discriminant Analysis
摘要人脸分析是近年来计算机视觉与模式识别领域里的一个研究热点问 题之一,因为它在身份认证、视觉监控、人机交互、娱乐动画、以及多媒 体等领域有着广泛的应用前景。人脸分析的研究中包含的课题很多,比如: 检测、跟踪、识别、表情分析、建模、动画等。本文是以跟踪和识别作为 研究的背景,主要工作可以归纳如下: 1.针对2维的人脸(头)跟踪的特点,提出了一种结合直方图匹配和 形状约束的鲁棒跟踪方法。首先通过带空间信息的自适应直方图匹配,来 估计一个大体的位置。在直方图匹配中,采用了均值漂移的优化思想自动 搜索匹配路径。然后结合椭圆形状约束,采用椭圆边界上点的归一化梯度 模型来准确定位位置及其尺度的大小。实验结果证明了此方法的实时性和 鲁棒性。 2.自从线性主元分析被成功应用于人脸识别之后,子空间分析方法就 成为了人脸识别的主流方法之一。本文详细回顾了已有的各种子空间分析 方法,并给出了优缺点的评价。 3.针对概率推理模型中存在较强假设的不足,提出基于核密度估计分 类器的人脸识别方法。即采用核密度估计的方式来描述类内的条件概率密 度,用EM算法来学习核函数的半径。文中分别以线性主元分析和核主元 分析作为特征描述方式,对它的性能进行了验证。 4.由于线性子空间方法不足以描述实际人脸图像中的表情、光照、姿 态等复杂的非线性变化。本文提出了基于核Fisher判决分析的人脸识别方 法。因为核Fisher判决分析既具有核技巧的非线性描述能力,有继承了 Fisher线性判决分析的优点。实验结果表明它能比线性子空间分析和核主 元分析取得更好的识别性能。 5.最后在前一工作的基础上,本文又提出了用派生的Cosine核函数 来代替原始的多项式核函数,引入了特征向量选择机制来减小计算的复杂 度,并结合具有一定泛化能力的近邻特征线分类器,来进一步增强核Fisher 判决分析中人脸识别中性能。实验证明了它们的有效性。
其他摘要Face analysis is one of hot topics in the field of computer vision and pattern recognition because of the potential applications in many fields, such as identity authentication, surveillance, human-computer interface, multi-media and so on.. It includes face detection, tracking, recognition, facial expression analysis, modeling and animation. In this thesis, we focus on face tracking and recognition. The contributions of the thesis are: 1. A robust 2-D head tracking is proposed which is based on histogram matching and shape constrain. First, an adaptive weighted histogram matching is used to estimate an initial position, in which an optimal method called mean shift is adopted to search matching path automatically. After histogram matching, a normalized gradient model of elliptical boundary is used to accurately track the head's position and scale size in a local range. Experiments demonstrate that it is a real-time and robust tracker. 2. Since linear Principal Component Analysis (PCA) was successfully applied for face recognition, subspace analysis methods have been one kind of popular methods. In the thesis, a brief review of subspace analysis methods in face recognition is given. 3. In order to get rid of the constrain of Probability Reasonable Model (PRM), kernel density estimation is presented to estimate the within-class conditional probability, and EM algorithm is adopted to estimate the radius of the kernel. Experimental results show that it can improve the performance of linear Principal Component Analysis (PCA) and Kernel based Principal Component Analysis (KPCA) in face recognition. 4. Because it is inadequate for linear subspace analysis methods to describe the complex relations of real face images, such as pose, illuminant, expression variations. Kernel based Fisher Discriminant Analysis (KFDA) is proposed for face recognition, which combines the nonlinear kernel trick and Fisher Linear Discriminant Analysis(FLDA). Experimental results show that it can give higher accurate recognition rate than linear subspace analysis methods and KPCA. 5. Based on the previous work, in order to further enhance the performance of KFDA in face recognition, the Cosine kernel function is proposed to replace the original polynomial kernel function, and feature vector selection is introduced to reduce the computational complexity, and the Nearest Feature Lines (NFL) classifier is combined. Experimental results show that the proposed method has an encouraging performance.
馆藏号XWLW754
其他标识符754
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/5742
专题毕业生_博士学位论文
推荐引用方式
GB/T 7714
刘青山. 人脸跟踪与识别的研究[D]. 中国科学院自动化研究所. 中国科学院研究生院,2003.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
博士生学位论文-754.pdf(9053KB) 暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[刘青山]的文章
百度学术
百度学术中相似的文章
[刘青山]的文章
必应学术
必应学术中相似的文章
[刘青山]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。