CASIA OpenIR  > 毕业生  > 博士学位论文
体育视频分析与摘要
其他题名Sports Video Analysis and Summarization
童晓峰
学位类型工学博士
导师卢汉清
2006-01-06
学位授予单位中国科学院研究生院
学位授予地点中国科学院自动化研究所
学位专业模式识别与智能系统
关键词体育视频分析 精彩片断检测 Replay检测 镜头分类 局部运动 游泳节目 Sports Video Analysis Highlight Extraction Replay Detection Shot Classification Local Motion Swimming Video
摘要体育视频分析是近年来多媒体领域内的一个研究热点,它有着巨大的应用前景和广大的受众群体。体育节目分析的主要研究包括:精彩片断检测、节目的自动摘要、浏览、语义事件检测、检索、节目定制、内容编辑等。本文的主要工作集中于体育视频中级特征的提取,包含以下几个方面: (1) 提出了一种基于决策树的足球视频语义镜头分类方法。首先定义了几个重要的镜头类型,然后在图像帧上联合颜色、纹理、形状等特征利用决策树对画面进行分类。镜头的类别由其中包含的画面帧的分类结果投票决定。镜头分类是视频语义分析的基础,特定的镜头上下文蕴涵着特定的语义事件。 (2) 提出了足球节目中基于重放标志图和镜头上下文的自动重放场景检测。首先自动提取了重放标志图用于获取重放段落边缘,然后使用段内运动信息和镜头信息识别重放场景。该方法一方面能够准确定位重放段落边界,另一方面可以鲁棒的识别重放场景。本文利用镜头分类和重放场景等中级描述实现了足球节目中射门和红黄牌事件的检测。 (3) 建立了场地球类运动中统一的镜头描述框架。首先分析了镜头生成与使用的场景特点,给出了镜头表达的三元素模型,然后提出了场地球类运动中语义镜头描述框架,并将它应用于语义镜头检索、视频时域分割和语义分析。 (4) 提出了一个快速的足球检测与跟踪算法。首先分割并提取比赛场地,然后采用由粗及精的策略联合颜色与形状信息检测球的位置,并使用基于Monte Carlo采样的Condensation算法进行足球的跟踪。 (5) 从局部运动的角度分析了游泳节目中运动员运动并应用于游泳姿态分类。首先利用颜色和运动信息提取出局部运动,结合运动能量估计了游泳运动的周期,然后在每个周期中提取一个运动特征显著帧,最后联合运动周期和显著帧运动特征对四种游泳姿态进行了分类。 关键词:体育视频分析,精彩片断检测,replay检测,镜头分类,局部运动。
其他摘要Sports Video has being a hot research topic for its wide viewer-ship and enormous application potential in recent years. The objectives and applications of sports video processing and analysis include: highlight extraction, video summarization, browsing, semantic event detection and retrieval, video service customizatino, video content editing, enhancement and richment, etc. This thesis focuses on mid-level feature extraction in sports video. The main content consists of:(1) Decision tree based seamntic shot classification is proposed. Firstly, several important shot types are prior defined. Then, color, texture and shape features are combined to perform view classification. The final shot type is voted by views contained in the shot. (2) Automatic replay scene detection based on replay-logo and shot context is proposed. Automatic logo detection algorithm is used to locate the boundaries of replay scenes. Then, motion and shot context cue are utilized to discriminate replay scene. This method can not only accurate locate the replay boundaries, but also robust recognize replay scenes. Based on shot classification and replay detection, shoot and red/yellow card events are detected in soccer videos.(3) A unified semantic shot description framework is constructed. The certain scenes of shot generated are analyzed, and the three-factor model is used to characterize a shot. Then, a unified field-ball semantic shot description framework is constructed. Finally, the framework is used to shot clustering and retrieval, video segmentation and semantic analysis.(4) An efficient soccer ball detection and tracking method is proposed. Firstly, the play-field is segmented, and a coarse-to-fine criterion is used to locate the soccer ball. The Monte Carlo based Condensation algorithm is applied in the procedure of ball tracking.(5) Motion analysis and swimming style classification is performed as viewed from local motion. Local player motion is firstly detected through color and motion cues. Then, motion periodicity is estimated based on motion energy. A motion salient frame in each period is selected and finally the motion periodicity and motion feature in salient frame is integrated for swimming style classification.
馆藏号XWLW958
其他标识符200218014603222
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/5885
专题毕业生_博士学位论文
推荐引用方式
GB/T 7714
童晓峰. 体育视频分析与摘要[D]. 中国科学院自动化研究所. 中国科学院研究生院,2006.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
CASIA_20021801460322(1985KB) 暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[童晓峰]的文章
百度学术
百度学术中相似的文章
[童晓峰]的文章
必应学术
必应学术中相似的文章
[童晓峰]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。