CASIA OpenIR  > 毕业生  > 博士学位论文
基于视觉的室内移动机器人定位方法研究
其他题名Research on Vision Based Localization of Indoor Mobile Robots
王辉
学位类型工学博士
导师原魁
2006-03-01
学位授予单位中国科学院研究生院
学位授予地点中国科学院自动化研究所
学位专业控制理论与控制工程
关键词自主移动机器人 视觉 定位 特征跟踪 运动估计 Autonomous Mobile Robot Vision Localization Feature Tracking Motion Estimation
摘要室内移动机器人定位方法的研究目的是使移动机器人能够实时可靠地确定自己在环境中的位置,从而实现在工作环境中的自主导航。基于视觉的移动机器人自定位具有采用其它传感器进行定位时所无法比拟的优点,已成为室内环境下移动机器人自定位的重要研究方向。本文在中国科学院自动化研究所创新基金“服务与教育机器人”课题的资助下,以室内服务机器人的视觉定位导航为应用背景,对基于视觉的室内机器人的定位问题进行了研究。本文的研究内容主要包括以下几个方面: 论文首先回顾了机器人的发展历程,对移动机器人的应用背景、发展状况进行了概述。详细讨论了目前移动机器人领域的主要研究方向,并对基于视觉的移动机器人定位的研究现状进行了综述。 其次,结合室内移动机器人的运行环境对图像序列的特征跟踪问题进行了研究。对于点特征的跟踪,提出一种利用距离约束对KLT跟踪进行改进的方法;然后介绍了基于Hough变换的特征跟踪;最后提出一种在环境亮度剧烈变化情况下,结合KLT跟踪和Hough变换的鲁棒特征点跟踪方法。 第三,室内移动机器人一般运行于平坦的地面,本文在假设其摄像机视野为天花板平面场景的条件下,提出了一种利用单目摄像机进行实时位姿估计的视觉码盘算法,并对该算法的适用条件及误差进行了分析。实验结果表明该方法可以取得良好的定位效果。 第四,室内环境下特征点往往较为稀疏,并且存在许多相似的特征点,直接对双目图像序列进行基于区域灰度相关的匹配算法往往不能得到良好的结果。本文提出一种利用特征点的SIFT描述来进行立体匹配的方法,并通过实验进行了验证对比。论文进而研究了基于双目立体视觉图像序列的室内移动机器人定位问题并进行了实验分析。 最后,对本文所做的研究工作及取得的研究成果进行了总结,指出了需要继续开展的工作。
其他摘要The purpose of localization study is to enable mobile robots to determine their position in environment in real-time and reliably, which is necessary for mobile robots to navigate autonomously. Vision based localization has many advantages that other methods are unsurpassable and has become an important research field. Supported by Innovation Foundation of IACAS “Service and Education Robots”, some key techniques of vision based localization for indoor mobile robots are studied in this thesis. The main contents of this paper are listed as follows: Firstly, the history, application background and development status of robots and mobile robots are briefly reviewed. The main study focuses on mobile robots are addressed in details. Thereafter, a survey on vision based localization of mobile robot is presented. Secondly, feature tracking of monocular image sequences is discussed considering the indoor environment which the mobile robots work in. With respect to point feature tracking, the KLT algorithm is introduced. A method is proposed to improve KLT algorithm by means of distance constraints between feature points. Then the Hough-based tracking method is depicted, followed with the introduction of a light adaptive, novel feature tracking method which combines both the KLT method and the Hough-based method. Thirdly, a real-time visual odometry algorithm with monocular sequences is presented based on two planar assumptions: indoor robots are moving on planar ground and the camera view is planar structure. Experimental results show that the proposed method achieve good precision in short distance run as well as long distance run. The validity and error of the estimation are also analyzed. Fourthly, there are sparse and similary features in most indoor environment, such as office. So correlation based matching methods may not work well under this circumstance. A new method that uses the SIFT descriptor of the feature to realize stereo matching is proposed and confirmed to be feasible by experiments. Stereo image sequence based localization is also discussed and analysed. Finally, the achieved research results are summarized and future work is addressed.
馆藏号XWLW963
其他标识符200218014603175
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/5892
专题毕业生_博士学位论文
推荐引用方式
GB/T 7714
王辉. 基于视觉的室内移动机器人定位方法研究[D]. 中国科学院自动化研究所. 中国科学院研究生院,2006.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
CASIA_20021801460317(3688KB) 暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[王辉]的文章
百度学术
百度学术中相似的文章
[王辉]的文章
必应学术
必应学术中相似的文章
[王辉]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。