CASIA OpenIR  > 毕业生  > 博士学位论文
移动机器人环境建模与定位问题研究
其他题名Research on mapping & localization for a mobile robot
王宏明
学位类型工学博士
导师谭民 ; 侯增广
2007-05-28
学位授予单位中国科学院研究生院
学位授予地点中国科学院自动化研究所
学位专业控制理论与控制工程
关键词移动机器人 环境建模 定位 超声传感器 Mobile Robot Mapping Localization Sonar
摘要移动机器人环境建模与定位问题是移动机器人研究领域中的基本问题,它是实现自主导航的基础。尽管对此问题的研究已有二十多年的历史,但仍然存在尚未解决的问题以及不断出现的新问题。由于超声传感器的物理特性,在某种意义上,它只能被看作是一个纯距离的测量装置,因此利用超声传感器进行环境建模和定位更是一项具有挑战性的工作。本文以利用超声传感器实现环境建模和定位为切入点,对移动机器人环境建模与定位问题进行了深入的研究,尤其是从系统的角度,对不同的定位系统以及SLAM系统的能观性进行了分析,得出了一些较有价值的结论。本文的主要工作和贡献有:1) 针对超声传感器能够在室内环境下稳定地探测到点和线这两种特征的特性,提出了可以实现稀疏超声数据与特定类型特征进行数据关联的三测量关联模型,并在数据关联的基础上,利用迭代最小二乘法估计出了特征的参数,完成了从超声数据建立包含点特征和线特征的特征地图的工作。本方法避免了利用大量超声数据进行数据关联而无法满足移动机器人实时性的局限。2) 在实际中,基于路标或者特征地图的定位系统往往要考虑一个问题:环境中有多少个路标或者特征才能够满足定位的需要。以超声传感器定位为研究目标,本文对纯距离测量定位系统的能观性进行了分析,并回答了上述问题,得出了一些具有一般性意义的结论。基于这些结论,提出了基于角度直方图的姿态估计方法以及基于最优支撑分布的蒙特卡洛定位方法。3) 尽管SLAM问题是当前移动机器人环境建模与定位研究领域中的热点问题,但是关于SLAM是否能够真正实现一直都未有过确定的说法。本文在对状态空间描述下的三种SLAM系统以及纯距离测量SLAM系统的能观性分析的基础上,得出了所分析的这些SLAM系统都不是完全能观的结论,并利用这些结论,对EKF-SLAM算法中出现估计不一致的原因进行了说明。此外,还给出了增加已知路标来实现SLAM的条件。4) 动态环境下的SLAM问题是一个更具挑战性的问题。要解决这个问题,首先要选择一个既能够表示出物体位置,又能够表示出物体状态的模型,而混合高斯模型就是这样一个合适的模型。本文给出了一种SLAM问题贝叶斯后验概率分布的分解形式,并在此分解形式的基础上提出了用混合高斯模型为环境建模,粒子滤波器为移动机器人定位,在动态环境下解决SLAM问题的方法。
其他摘要Mapping and Localization, which serve as the basis for autonomously navigating a mobile robot, have been extensively studied for more than 20 years. However there are still some problems unsolved, especially on mapping and localization by use of sonar. With wide beam, sonar acts as a range-only measurement equipment in some sense. Consequently,mapping and localization with sonar data are with more challenges. In this thesis, we study the problem of mapping and localization by use of sonar. The main contributions of this thesis include following issues:1) Considering that sonar can detect two types of target (point and line feature) in indoor environments, we propose a model called three measurements association model to associate sparse sonar data to specific features, and based on the model we use an iterative least square estimator to estimate the parameters of the features from associated sonar data and build a sonar feature map finally. Our approach avoids the problem caused by implementing data association from dense sonar data, satisfy the need of real-time application.2) Before implementation of robot localization based on the landmark or feature map, there is a common question that how many landmarks or features are enough to localize the robot. In this thesis, with some important results from observability analysis on the localization systems with rang-only measurement, we answer the question above. Furthermore, based on the results, we propose an approach for heading estimation using angle histogram and develop a MCL method based on optimal proposal distribution.3) SLAM problem attracts more and more attentions in mobile robot community. However, there is no affirmative answer on whether SLAM problem can be solved. With some important results from observability analysis on three types of SLAM systems and SLAM systems with rang-only measurements, we draw some conclusions that none of the SLAM systems we analyzed is completely observable. Furthermore, based on these results, we account for the estimation inconsistency in EKF-SLAM implementation and propose the conditions for implementing SLAM by adding known landmarks.4) For mapping dynamic environments, a Gaussian mixture model which can not only represent the position of the objects, but also the state of the objects is chosen in our approach. In addition, we deduced a factored formulation of Bayesian posterior for SLAM problem, base on which we develop an approach for SLAM in dynamic environments,with GMM to model the environment and particle filter to localize the mobile robot.
馆藏号XWLW1271
其他标识符200418014628038
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/5981
专题毕业生_博士学位论文
推荐引用方式
GB/T 7714
王宏明. 移动机器人环境建模与定位问题研究[D]. 中国科学院自动化研究所. 中国科学院研究生院,2007.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
CASIA_20041801462803(9268KB) 暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[王宏明]的文章
百度学术
百度学术中相似的文章
[王宏明]的文章
必应学术
必应学术中相似的文章
[王宏明]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。