CASIA OpenIR  > 毕业生  > 博士学位论文
网络图像检索系统中关键技术的研究
其他题名Study on Key Techniques in Web Image Retrieval System
刘静
学位类型工学博士
导师马颂德 ; 卢汉清
2008-01-30
学位授予单位中国科学院研究生院
学位授予地点中国科学院自动化研究所
学位专业模式识别与智能系统
关键词图像检索 图像标注 相关反馈 图像挖掘 Image Retrieval Image Annotation Relevance Feedback Image Mining
摘要本文主要针对图像检索系统中的自动图像标注,相关反馈以及网络图像的语义挖掘等关键技术进行了深入的研究,主要成果和创新之处包括以下几个方面: (1) 讨论并分析了自动图像标注问题,通过总结现有的研究工作,提出了一种基于图学习的图像标注框架。在这个框架下,图像标注过程被分为两个阶段来完成,即基本图像标注与图像标注改善,其中前一阶段是通过以图像间相似性关系为依据的图学习过程来实现的,而后面的标注改善是通过以词汇间语义关联关系为依据的图学习过程来实现的。 (2) 在基于多图学习的图像标注框架下,提出了框架中各子问题的解决方法,分别是基于最近邻生成链(Nearest Spanning Chain,NSC)方法的图像间相似关系的估计和分别基于统计特性与网络检索技术的标注词汇间相关关系的估计,并将它们综合起来有效地实现了图像的自动标注。 (3) 提出了一个与传统相关概率模型相对偶的跨媒体相关模型来解决图像的自动标注。这一模型有效地将图像检索技术、网络搜索技术融入到图像标注任务中,克服了传统方法对训练数据的依赖,并从一定程度上缓解了“语义鸿沟”的障碍以及由巨大的图像规模所带来的推广性问题等。 (4) 提出了一种基于图学习方法的多层次的相关反馈模型,它从用户检索习惯出发,引入了三种反馈方式:前进式、后退式与重启式的反馈,以此作为隐式的反馈信息,而用户的相关性判断作为显式的反馈信息。系统将综合这两类反馈信息来改善查询表示,并调整检索过程中的距离度量,然后在基于图学习的框架下将各种信息融合在一起,进而给出符合用户要求的检索结果。 (5) 设计了一套借助网络搜索引擎来完成基于语义的图像挖掘方案。它可以自动地获取与特定语义概念相关的网络图像,并且具有较好的可扩展性,能够通过完全自动的重复操作收集到成百上千的大规模语义相关图像集。
其他摘要The dissertation focuses on key techniques in web image retrieval. They are image auto-annotation, relevance feedback in searching process, and web image mining semantically. The main contributions of the dissertation are as follows: (1) The discussion and analysis about image auto-annotation are given in details. Based on some related work, we propose a unified annotation framework via multi-graph learning, which includes two sub-processes, i.e., basic image annotation and annotation refinement. In the basic annotation process, image-based graph learning is utilized to obtain the candidate annotations. In the annotation refinement process, the word-based graph learning is used to refine those candidate annotations from the prior process. (2) Under the direction of the proposed annotation framework, we propose some effective approaches to estimate the multi-graph model. Specially, NSC-based method is used to construct the image-based graph model, statistical information and search-based approaches are utilized to construct the word-based graph model. The two sub-processes are performed sequentially and finish the task of image annotation effectively. (3) A dual cross-media relevance model (DCMRM) is proposed for automatic image annotation, which provides a new direction to the study of image auto-annotation. To the best of our knowledge, we are the first to formally integrate image retrieval, and web search techniques together to solve the image annotation problem. This relieves the dependence on training set and makes the large-scale image annotation possible. (4) A human behavior consistent relevance feedback model for image retrieval is designed. Simulating human behaviors, the proposed model enable the user to perform relevance feedback in three manners: Follow up, Go back, and Restart. Each manner is a way for the user to provide the system with his or her opinions about search results. The accumulated feedback information can be used to refine the user query and regulate the similarity metric. We adopt the graph ranking algorithm to model the retrieval process. (5) A method of web image mining semantically with the help of a web search engine is proposed in the dissertation. The method can be automatically performed to mine many web images relevant to a specific concept. By repeating the automatic process many times with different concepts, a large scale image set can be obtained easily. That is, the method has good scalability.
馆藏号XWLW1164
其他标识符200418014628033
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/6048
专题毕业生_博士学位论文
推荐引用方式
GB/T 7714
刘静. 网络图像检索系统中关键技术的研究[D]. 中国科学院自动化研究所. 中国科学院研究生院,2008.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
CASIA_20041801462803(7003KB) 暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[刘静]的文章
百度学术
百度学术中相似的文章
[刘静]的文章
必应学术
必应学术中相似的文章
[刘静]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。