CASIA OpenIR  > 毕业生  > 博士学位论文
基于贝叶斯网络的纹理图像模型
其他题名Texture Image Model Based On Bayesian Network
王强
学位类型工学博士
导师彭思龙
2008-05-27
学位授予单位中国科学院研究生院
学位授予地点中国科学院自动化研究所
学位专业模式识别与智能系统
关键词贝叶斯网络 纹理模型 纹理合成 纹理分类 从纹理恢复形状 尺度不变特征 Bayesian Network Texture Model Texture Synthesis Texture Classification Shape From Texture Scale-invariant Feature
摘要对纹理的研究是计算机视觉、图像处理和模式识别领域的重要方向。本论文在回顾和分析了一些常用的纹理分析模型和方法的基础上,提出用贝叶斯网络对纹理图像建模,并用于纹理的合成和分类。本论文的内容包括基于贝叶斯网络的纹理合成技术、贝叶斯网络纹理图像建模与分类方法和用尺度不变特征从纹理恢复形状。 首先,介绍了基于贝叶斯网络的纹理合成技术。根据贝叶斯网络在发掘和表示节点间独立性和因果性关系方面的长处,研究了基于贝叶斯网络模型的纹理分析和合成技术,提出如何从已知样本建立贝叶斯网络模型,学习其结构和参数的方法,并结合邻域匹配和搜索的方法将其应用到纹理合成中,对二值、灰度和彩色纹理的合成都取得了良好的效果。 其次,介绍了贝叶斯网络纹理图像建模与分类技术。用贝叶斯网络对纹理图像建模并进行特征的提取。把纹理图像在一个窗口内各个像素的灰度值看作贝叶斯网络的一次实现,通过训练得到各类纹理所对应贝叶斯网络的结构和参数,用纹理图像像素点在网络中的条件概率分布的直方图作为特征进行纹理分类。这种纹理分类的方法以贝叶斯网络中节点的条件概率分布为特征,节点的邻域结构是从原纹理图像中学习得到的,不同于以往模型中固定的邻域结构。 最后,用尺度不变特征从纹理恢复形状。论文给出了一种估计纹理平面方向的方法。通过此方法可以先将纹理图像恢复成正面垂直方向,并估计出相应的尺度。该方法首先提取纹理图像中具有尺度不变特征的关键点,求出以这些关键点为中心的局部模式的尺度和方向正规化的特征,然后按照特征将这些模式分类,并假定图像中同属一类的局部模式的尺度变化仅由成像时的透视效果产生,最后利用纹理图像中局部模式尺度变化与射影变换的关系估计物体表面的形状。在估计平面的方向时利用稳健回归方法弥补将特征点聚类时的误差。
其他摘要Texture analysis is an important research area in computer vision, image processing and pattern recognition. In order to deal with texture problems, we usually make a texture model and extract features. In this thesis, after a brief review of the related work, a Bayesian network texture model is given based on which texture synthesis and classification methods are proposed. The content of this thesis includes texture synthesis based on Bayesian networks, Bayesian network texture classification and shape from texture using scale invariant features. Firstly, a texture synthesis method based on Bayesian network model is given. Texture synthesis is an active and useful research area, it can be used to check whether a texture model is proper. Since Bayesian network is good at describing the causal and dependency relations between nodes, in this thesis, we use it to model the relations between texture pixels in a small region and propose synthesis methods for binary, gray level and color textures. Secondly, a Bayesian network texture classification method is proposed. After modeling a texture image with Bayesian network, features can be extracted from the model. Pixel values in a small image patch are treated as a realization of a Bayesian network. All the patches form a sample from which the network structure and parameters for conditional probability distribution functions (CPDs) of nodes are estimated. Then the histograms of these CPDs for each node are used as features for texture classification. Finally, shape from texture problem is solved using scale invariant features. The direction of a texture plane can be estimated by the scale variance of the alike local structure patterns. After identifying all the key points which have scale invariant features, they are clustered by their SIFT descriptors. Under the assumption that all the local structure patterns in the same cluster have the same size, the direction of texture plane is estimated by the change of their scale. Robust IRLS method is used to make up with the error of clustering process.
馆藏号XWLW1222
其他标识符200518014628072
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/6078
专题毕业生_博士学位论文
推荐引用方式
GB/T 7714
王强. 基于贝叶斯网络的纹理图像模型[D]. 中国科学院自动化研究所. 中国科学院研究生院,2008.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
CASIA_20051801462807(2817KB) 暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[王强]的文章
百度学术
百度学术中相似的文章
[王强]的文章
必应学术
必应学术中相似的文章
[王强]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。