CASIA OpenIR  > 毕业生  > 博士学位论文
行走步态图像分析与识别
其他题名Analysis and Recognition of Walking Gait Images
覃道亮
学位类型工学博士
导师谭铁牛
2008-12-28
学位授予单位中国科学院研究生院
学位授予地点中国科学院自动化研究所
学位专业模式识别与智能系统
关键词生物特征 夜间步态识别 步态特征分析 视觉监控 张量分析 Biometrics Night Gait Recognition Gait Feature Anlysis Visual Surveillance Tensor Analysis
摘要9.11事件加深了增强安全性的一致认识,同时提出了视频监控系统的智能化要求。智能视觉监控技术的强烈应用需求激起了步态识别技术研究开发的浓厚兴趣,以期望提高监控系统服务性能。本文围绕步态识别问题(特别是夜间步态识别问题)、步态体形特征提取问题、识别率与尺度度量关系问题进行了一系列研究。此外,本文还探讨了向量相关成分分析的张量扩展。本文的主要研究工作包括 * 利用统计区域补偿原理,给出了一种方法来弱化热红外图像中的自校正对检测结果的影响,提出了一种基于统计伪形的夜间步态识别框架。对于每段夜间步态视频序列而言,先预处理每一幅红外视频帧以尽可能减少光晕与自校正对检测结果的影响。接着应用背景减除方法并结合相邻帧所提供的运动区域线索来检测定位运动行人。此外,基于一种归一化伪形特征来刻画步行者步态特性,采用线性子空间投影方法来降低特征维数,并通过等价约束来利用步态中的动态时序关系特征。实验结果表明该算法在夜间步态识别方面获得充满希望的进展。 * 基于``人体形状主宰步态识别性能''观点,提出了一系列向量式体形投影特征。将规整化的行人剪影图像分别沿四个方向(水平方向,垂直方向,正对角线方向及负对角线方向)进行投影以得到八种启发式特征。此外,通过分析重构误差的解析表达式,按照优化原理的思想进行求解最佳步态投影特征方向。另外,尝试组合正交投影特征来刻画步态特性。实验结果表明该方法取得了令人满意的识别性能。 * 基于``步行者图像具有二阶张量(矩阵)数据形式''观点,提出了基于非迭代矩阵解析特征的步态识别方法。先预处理每幅步行者剪影图像来规整化图像中感兴趣区域的尺寸大小与空间位置,接着利用两种单边偏序张量积变换来降低规整化步态剪影的阶数(或秩),然后应用判别分析思想到二维降阶剪影图像,以期改善数据分布,进而有利正确分类结果。通过组合原理得到四种单边偏序图像变换。识别实验结果说明非迭代解析步态识别方法能够产生匹敌于迭代算法的识别性能,但需要更少的计算代价。 * 基于``张量数据分析''思想,扩展了相关成分分析方法到二阶张量(矩阵)情形,并将其应用到步态识别问题当中,以等价约束的形式来间接利用步态时序动态特性。与二阶张量判别分析相比,实验结果表明二阶相关成分分析能够稳定步态识别算法的性能。
其他摘要The 9.11 incident deepens the consensus of security enhancement and triggers the need for intelligent visual surveillance systems. The request for smart surveillance motivates much interest in gait recognition, in an attempt to improve security services. This thesis focuses on the problems of gait recognition (especially gait recognition at night time), gait shape features, and how different scales and metrics affect recognition rates. In addition, we present the extension of vector-oriented relevant component analysis to the higher order tensor case. Major contributions of this thesis include the following: * We reduce the impact of self-adjustment in thermal imagery on walker detection using statistical compensation and present a pseudoshape-based night gait recognition framework. For each video sequence, we first preprocess each frame to reduce the effect of halo and self-adjustment and then employ background subtraction to pinpoint moving people with the help of motion constraints derived from consecutive frames. In addition, we use projective pseudoshape features to characterize distinct walkers and exploit linear subspaces to reduce the dimension of the gait features used. Dynamic temporal cues are utilized in the form of equivalence constraints. Experimental results show that the proposed algorithm gives a promising advance in night gait recognition. * We propose a series of vector-based projective shape features based on the observation that ``shape information dominates the performance of gait recognition''. First, normalized silhouette images are projected in four directions (horizontal, vertical, positive diagonal, and negative diagonal) to obtain eight heuristic features. In addition, optimal projective features are obtained through minimizing the reconstruction error in the optimization paradigm. Furthermore, orthogonal projection features are also combined to describe human gait. Experiments demonstrate that this method can produce satisfying recognition performance. * We present noniterative analytic matrix features for gait recognition, based on the fact ``pedestrian images have the property of second order tensor''. First, each silhouette image is normalized to reduce the effect of image size and walker location. Then unilateral partial order tensor product is used to reduce the rank of silhouette images. Additionally, we apply matrix-based discriminant analysis to improve data distribution and favor classification. Four un...
馆藏号XWLW1300
其他标识符200418014628046
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/6133
专题毕业生_博士学位论文
推荐引用方式
GB/T 7714
覃道亮. 行走步态图像分析与识别[D]. 中国科学院自动化研究所. 中国科学院研究生院,2008.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
CASIA_20041801462804(8977KB) 暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[覃道亮]的文章
百度学术
百度学术中相似的文章
[覃道亮]的文章
必应学术
必应学术中相似的文章
[覃道亮]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。