CASIA OpenIR  > 毕业生  > 硕士学位论文
指纹识别中的图像增强和特征提取算法研究
其他题名Investigation on Fingerprint Image Enhancement and Feature Extraction
杨建伟
学位类型工学硕士
导师蒋田仔
2003-06-01
学位授予单位中国科学院研究生院
学位授予地点中国科学院自动化研究所
学位专业模式识别与智能系统
关键词指纹图像 图像增强 图像的数学变换 Gabor滤波器 特征提取 特征匹 配 自动指纹识别系统 Fingerprint Image Image Enhancement Image Mathematic Trans- Form Gabor Filter Feature Extraction Feature Matching Fingerprint v
摘要生物识别技术的出现得益于现代电子集成制造技术和快速可靠算法的发展。作为生物 识别技术中最为具有应用前景的指纹识别技术。近些年来更是取得了长足的发展并广泛应 用在各种个人身份识别场合。指纹识别大致可以分为三个阶段:指纹图像预处理,指纹的 特征提取和指纹的特征匹配。在本文中,我们有针对性地对于指纹识别的这三个阶段进行 了算法研究并提出自己的研究观点,在同时,我们设计了一个旨在应用于智能卡的指纹识 别系统a 本文针对指纹系统的各个环节进行了初步的探索性研究,涉及到了许多图像处理和 模式识别的基本问题,包括图像的滤波、图像的增强、图像的傅立叶变化、图像的小波变 换、信息论、特征的提取、特征的匹配等等。在本文中,主要的工作和贡献有: 1.提出了一种旨在于指纹图像增强的改进Gabor滤波器的设计方法。在该方法 中,Gabor滤波器是各向异性的,它的参数是通过具体指纹图像的属性而自动, 选择的,因此其参数选择方法是图像自适应的。 2.针对所采用图像的特点,我们提出了一种有向中值滤波和有向高斯滤波方法,并把 它应用到我们所设计自动指纹识别系统中。这个方法具有简单易行、速度快的特 点,非常适合于实时系统。 3.改进了一种基于图像灰度的特征提取方法。通过对传统方法的大量实验,我们在其 基础上进行了算法改进工作,改进后的方法能够更加准确的提取出指纹图像的细节 特征。 4.通过对指纹图像全局纹理特性的观察,提出了把指纹图像的方向场进行下采样来得 到一种新的反映指纹全局纹理结构的新特征,这种新特征对于提高特征匹配的正确 率是很有裨益的。 5.在新特征的加入下,我们改进了传统的基于Hough变换的指纹特征点的匹配算法。 该算法省略了指纹的分类环节,融合了指纹的局部特征和全局特征进行特征匹配, 从而达到了提高指纹匹配正确率的目的。 6.在和同事的大力合作下,我们设计了一个旨在应用于智能卡的自动指纹识别系统。 总的说来,本文在针对指纹识别的各个环节尤其指纹图像预处理进行了有益的探索。
其他摘要The development of biometrics technology based on the prosperity of research activities of modern electrical integrated manufacture, fast and robust algorithms. The technology of fingerprint identification, a most promising branch in biomet- rics, has made a great process and been being widely applied in a variety of situations of personal identity verification and recognition. Fingerprint identifica- tion can be divided into three periods: preprocessing of fingerprint images, feature extraction and feature matching. In this thesis, we focused on the research of al- gorithms in these three periods and proposed our research opinions. At the same time, we designed a fingerprint verification system. In this thesis, we made a primary study on the fingerprint identification system, which involves a lot of basic problems in image processing and pattern recognition, e.g. image enhancement, image Fourier transform, image wavelet transform, information theory, feature extraction, feature matching, etc. The main contributions of this thesis include following issues: 1. We propose a modified Gabor filter design scheme for special fingerprint image enhancement. In this scheme, the filer is anisotropic and selection of filter coefficients is image adaptive. 2. For the applied images, we developed an oriented median filter and an ori- ented Gaussian filter, and incorporated them into our automatic fingerprint identification system. The proposed method is simple, fast, and robust, which is very appropriate for the realtime application. 3. In this thesis, a feature extraction method based on gray scale is proposed. Through a variety of experiments~ we improved those traditional algorithms and experimental results showed that our proposed method could extract features more accurately. 4. Through our investigation to the property of global texture, we presented a new inherent feature by down sampling the image orientation field, which is very helpful to improve the feature matching accuracy. 5. We improved the traditional Hough transform-based feature matching method by incorporating the above new global feature into feature matching procedure. Therefore, by employing the new feature, we can achieve high matching accuracy without the procedure of fingerprint classification. 6. Collaborated with another colleague, we designed a fingerprint verification system. In a word, in this thesis, we have made a lot of fruitful attempts and significant progresses on our fingerprint identification system, especially fingerprint image preprocessing.
馆藏号XWLW682
其他标识符682
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/6839
专题毕业生_硕士学位论文
推荐引用方式
GB/T 7714
杨建伟. 指纹识别中的图像增强和特征提取算法研究[D]. 中国科学院自动化研究所. 中国科学院研究生院,2003.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[杨建伟]的文章
百度学术
百度学术中相似的文章
[杨建伟]的文章
必应学术
必应学术中相似的文章
[杨建伟]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。