CASIA OpenIR  > 毕业生  > 硕士学位论文
基于局部特征与统计分类的高分辨率遥感图像变化检测
其他题名Change Detection in Very High Resolution Satellite Images with Local Features and Statical Classifier
何亮亮
学位类型工学硕士
导师普林特
2009-05-27
学位授予单位中国科学院研究生院
学位授予地点中国科学院自动化研究所
学位专业模式识别与智能系统
关键词变化检测 遥感 局部特征 支持向量机 概率潜在语义分析 Change Detection Remote Sensing Local Features Support Vector Machine Probabilistic Latent Sematic Analysis
摘要随着社会的进步与发展,城市化进程正在加剧。房屋的拆迁,基础设施的兴建,使得地理信息发生着日新月异的变化。准确及时的获取城市及其周边环境的变化,对于地理信息系统的更新,城市规划与监管,自然灾害预警和救援都起着至关重要的作用。 经过多年的发展,变化检测在理论和技术方面都取得了丰硕的成果。早期的变化检测研究由于时空分辨率的限制,主要应用在低分辨率的影像,所针对的问题也主要限于大范围、大尺度、高层次的宏观变化问题,主要基于光谱特征的方法。近年来高分辨率影像的出现,使得变化检测也逐渐向小尺度的方向发展,出现了不同的方法。此外,目前的方法大多是针对两类问题而提出的,只能解决变化与否的问题,不能得到具体发生了哪种类型的变化。 本文以不同时相的高分辨率遥感影像为研究对象,以检测目标级别的变化作为研究目标,结合计算机视觉与模式识别领域的理论与方法,对两类变化与多类变化检测问题进行了理论研究与实验分析: 1) 根据需求整理构建了一个人工标定的变化图像数据库,分别针对变化检测的两类问题与多 分类问题进行了整理,使得模型参数的训练以及变化检测算法的评价具有可靠的标准。 2) 针对两类变化检测问题,提出了一种基于特征点与局部特征的算法框架。本方法涉及特征点及其对应特征的提取,统计分类器的训练与应用。本方法在很大程度上克服了单纯基于像素的方法的易受噪声干扰的缺点。此外,针对不同时间卫星拍摄参数的不同引起的视差问题,提出了一种针对特征点的局部匹配算法,从而大大提高了此框架的应用范围和实用性。 3) 在研究了两类问题的基础上,我们针对多类变化检测问题,提出了一种基于特征袋模型与支持向量机分类的方法。主要包含了特征提取与矢量量化,文档模型的表示,支持向量机核函数的选取。同时,通过应用概率潜在语义模型,来克服传统的文档模型特征字完全位置无关这一假设的限制,尝试利用目标的形状信息来进行变化检测。
其他摘要The urbanization is on the way with the progress of human society. The surface of the earth is changing rapidly due to the construction and demolish of buildings and infrastructures. It is an urgent task to get the geographical information changes efficiently, and the change detection task has a close relationship to urban planning and monitoring, early warning and rescue of nature disasters. During the past years, there are many researches carried out about change detection based on remote sensing images. Especially after the introduction of very high resolution imagery, the change detection task goes to fine scales. The pixel value based approaches is highly limited due to it's need for precise registration between two images acquired by different times. Moreover, recent methods are usually restricted to specific problems and not suitable for the practical application. And also, most of the research focused on binary detection problems. In this thesis, we investigate the change detection problem at the object level, and develop methods with the theory from computer vision and object recognition. We both study the binary detection problem and the multi-category classification problem. In this work, 1) We collect and build an expert labeled database with different change images. This data set makes it possible to carry out the parameter training and model evaluation. 2) We propose an approach based on interest points and local features, which involves interest points and feature extraction, training of statistical classifier. This approach is less sensitive to noises. To handle the different view angle problem, we proposed a new matching algorithm, which improves the result. 3) We proposed an approach based on term-document representation to solve the multi-category change detection and classification problem. This approach involves feature extraction and quantification, image pair representation and kernel selection for SVM classifier. Moreover, we proposed two approaches to incorporate spatial information between visual words based on second order visual word and pLSA model to extract visual topics.
馆藏号XWLW1400
其他标识符200628014628030
语种中文
文献类型学位论文
条目标识符http://ir.ia.ac.cn/handle/173211/7491
专题毕业生_硕士学位论文
推荐引用方式
GB/T 7714
何亮亮. 基于局部特征与统计分类的高分辨率遥感图像变化检测[D]. 中国科学院自动化研究所. 中国科学院研究生院,2009.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
CASIA_20062801462803(8000KB) 暂不开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[何亮亮]的文章
百度学术
百度学术中相似的文章
[何亮亮]的文章
必应学术
必应学术中相似的文章
[何亮亮]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。