CASIA OpenIR  > 毕业生  > 硕士学位论文
Alternative TitleResearch on Clamping Optimization of Large Optical Components Based on Adaptive Population Size Differential Evolution Algorithm
Thesis Advisor乔红
Degree Grantor中国科学院大学
Place of Conferral中国科学院自动化研究所
Degree Discipline控制工程
Keyword大型光机组件 装夹优化 差分进化算法 有限元法 Large Optics Components Clamping Optimization Differential Evolution Algorithm Finite Element Method
Abstract本文研究依托国家基金委青年基金“大型易损坏物体的高精度装配策略研究—基于视觉与高维环境约束融合方法”和重大专项外协项目“数字化装校平台关键技术研究”,针对大型光学组件的夹持、优化分析等关键技术展开深入研究。本文基于改进的差分进化算法和有限元方法,提出了一套切实可行的装夹优化方法,主要研究内容如下: 1. 论述了在装夹优化中广泛应用的有限元法的基本原理和分析步骤,并研究了应用有限元分析软件ANSYS进行工件装夹变形分析的关键技术。然后对夹持优化中的接触的处理进行了研究,提出利用弹簧代替工件与夹持元件之间的接触,以加快优化速度。同时,对无热应力条件下的形变模型进行了研究。 2. 阐述了经典差分进化算法的基本原理、实现步骤以及相比其他优化方法的优越之处。然后,针对经典差分进化算法存在的不足提出了自适应种群规模差分进化算法,很好的解决了大种群情况下算法收敛速度慢、易早熟的问题。并将其应用到实际的研究问题之中。 3. 介绍了大型光机组件的装配流程及其装夹方案的选取,基于优化理论以最小化工件的形变为目标函数,建立了研究问题的优化模型。在现有研究的基础上,基于改进的差分进化算法和有限元相结合的方法,提出了适合本文研究对象的夹持优化方法,并通过实验验证方法的有效性。 4. 在深入研究ANSYS二次开发方法的基础上,完成了基于VC++和ANSYS的数字化装校仿真平台的开发。该平台是利用VC++及ANSYS提供的二次开发工具APDL开发的界面友好的高效率有限元分析系统。用户只需相关参数,即可调用后台的ANSYS命令进行优化分析。
Other AbstractThis article research relying on the National Science Foundation Youth Fund" High-precision assembly strategy research of the large fragile objects - The fusion method based on visual and high-dimensional environmental constraints" and the major projects outsourcing project" The key technology research of digital assembly platform". Further research is made on the key technologies of the large optical components such as clamping, optimization analysis and so on. Based on the improved differential evolution algorithm and finite element method, a practical optimization clamping method is proposed, and the main contents are as follows: Firstly, the basic principles and analysis steps of the finite element method, widely used in the clamping optimization, is discussed, and the key technologies of applying the finite element analysis software ANSYS to the deformation optimization of the work-piece clamping are studied. Clamping Optimization of the contact processing is studied, and a spring is used to replace the contact between the work-piece and the clamping element, in order to speed up the optimization speed. Meanwhile, model with no thermal deformation under stress conditions is studied. Secondly, the basic principles of the classical differential evolution algorithm, the implementation steps as well as the strengths compared to other optimization methods are elaborated. Then, for the shortcomings of classical differential evolution algorithm, a adaptive population size differential evolution algorithm is proposed, which proved to be a good solution to the problem, such as slow convergence speed and prematurity, of the algorithm in the case of large populations. And it is applied to the actual research questions. Thirdly, the assembly process of the large optical components and the selection of the clamping scheme are introduced. Based on the optimization theory to minimize the work-piece deformation into the objective function, the optimization model of the research questions is established. On the basis of existing research, based on the combination of the improved differential evolution algorithm and finite element method, the clamping optimization method suitable for the clamping of the object of this paper is proposed. The effectiveness of the method is verified by experiments. Lastly, On the basis of further study of the method of secondary development of ANSYS, the development of a digital assembly simulation platform based on VC++ and ANSYS is ...
Other Identifier2010E8014668006
Document Type学位论文
Recommended Citation
GB/T 7714
董继武. 基于自适应种群规模差分进化的光机组件夹持优化研究[D]. 中国科学院自动化研究所. 中国科学院大学,2013.
Files in This Item:
File Name/Size DocType Version Access License
CASIA_2010E801466800(1417KB) 暂不开放CC BY-NC-SAApplication Full Text
Related Services
Recommend this item
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[董继武]'s Articles
Baidu academic
Similar articles in Baidu academic
[董继武]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[董继武]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.