CASIA OpenIR  > 毕业生  > 硕士学位论文
Alternative TitleThermal Control System Design and Simulation For Cryogenic Target
Thesis Advisor张晓鹏 ; 吴保林
Degree Grantor中国科学院大学
Place of Conferral中国科学院自动化研究所
Degree Discipline计算机应用技术
Keyword惯性约束聚变 冷冻靶 温度控制 建模 干扰分析 仿真 Inertial Confinement Fusion Cryogenic Target Thermal Regulation Modeling Disturbance Analysis Simulation
Abstract冷冻靶的温度控制是实现惯性约束聚变点火的核心技术之一。冷冻靶在氘氚(DT)三相点(19.79K)附近制备完成之后,需要进一步降温至点火温度(18.2K),从而达到降低靶丸内DT气体密度并提高冷冻靶能量增益的目标。以法国兆焦激光装置LMJ为原型,对冷冻靶末端传热机构各组成部分进行建模及干扰分析,提出了一种基于实时检测的多变量温度控制系统设计方案,并在Matlab/Simulink仿真平台上使用上述温度控制系统对“缓慢冷却”和“快速冷却”两种冷冻靶降温方法进行仿真研究。仿真结果表明,温度控制系统的动态响应性能及稳态精度均能够满足冷冻靶的温度控制要求。 以法国兆焦激光装置LMJ的冷冻靶为原型,对冷冻靶温度控制系统的各组成部分进行传热模型建立及分析,其中包括由靶基座、夹持器和热交换器组成的冷冻臂的建模分析和从靶基座到DT层的传热路径的传热模型建立。为提高系统仿真的可靠性和可信度,对冷冻靶温度控制系统中存在的扰动进行分析,并在仿真过程中予以考虑。 冷冻靶温度控制系统通过对冷冻臂各组成部分(靶基座、夹持器和热交换器)进行多点温度实时检测来提高测量精度,并且能够针对不同的降温阶段灵活的切换控制策略,满足不同降温阶段的具体要求。控制器采用自适应模糊PID控制算法,该算法结合了模糊控制系统动态性能好且抗干扰能力强的优点和PID控制算法控制精度高的优点。 在Matlab/Simulink环境下,使用上述温度控制系统对“缓慢冷却”和“快速冷却”两种降温方法进行仿真研究,从而检验温度控制是否满足冷冻靶温度控制的各项控制指标。对“快速冷却”的快速降温阶段的降温路径优化方法进行进一步的研究,以提高冷冻靶温度控制系统的温控性能。仿真结果表明,冷冻靶温度控制系统能够满足惯性约束聚变的温度控制要求;降温路径优化方法可以在不增大降温速率的条件下缩短DT层达到点火温度所需时间。
Other AbstractThe cryogenic target thermal regulation is a core technique to achieve ignition in the Inertial Confinement Fusion. The temperature of DT layer in cryogenic target need to be lowered from DT triple point (19.79K) to ignition temperature (18.2K) in order to reduce the density of DT gas and increase the energy gain of cryogenic targets. Thermal model and disturbance analysis of LMJ’s cryogenic target have been studied. A control system based on synchronous detection and “multi-variable” algorithm has been proposed and simulations of both “Slowing Cooling” and “Quick Cooling” were carried out in Matlab/Simulink. The results show that both the dynamic and the static characteristics of the thermal control system can satisfy requirements of cryogenic target thermal regulation. Based on LMJ’s cryogenic target, thermal models for components of cryogenic target have been established and analyzed, including cryogenic arm (consisting of target base, gripper and heat exchanger) and the thermal model from target base to DT layer in the cryogenic target. Disturbance in the cryogenic target thermal regulation system has been studied in order to promote reliability of simulation results. This designed thermal control system performs multipoint synchronous temperature detection to improve measurement accuracy, and switches control schemes according to different cooling phases in order to meet specific requirements. Self-tuning fuzzy PID algorithm is chosen to design the controller, because this algorithm possesses good performance in both anti-interference ability (Fuzzy control’s advantage) and high resolution (PID algorithm’s advantage). Simulations of “Slow Cooling” and “Quick Cooling” have been performed in Matlab/Simulink to test thermal control performance. The quenching route optimization method for quick cooling phase in “Quick Cooling” has also been further studied in order to improve thermal control performance. The results show that the cryogenic thermal regulation system proposed here can satisfy thermal regulation requirements imposed by Inertial Confinement Fusion. Besides, the proposed quenching route optimization method can reduce time that DT layer needs to reach ignition temperature without increasing cooling speed of target base.
Other Identifier201028014629072
Document Type学位论文
Recommended Citation
GB/T 7714
关馨. 冷冻靶温度控制系统设计及仿真[D]. 中国科学院自动化研究所. 中国科学院大学,2013.
Files in This Item:
File Name/Size DocType Version Access License
CASIA_20102801462907(2963KB) 暂不开放CC BY-NC-SAApplication Full Text
Related Services
Recommend this item
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[关馨]'s Articles
Baidu academic
Similar articles in Baidu academic
[关馨]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[关馨]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.