CASIA OpenIR  > 模式识别国家重点实验室  > 视频内容安全
Single and Multiple Object Tracking Using a Multi-Feature Joint Sparse Representation
Hu, Weiming1; Li, Wei1; Zhang, Xiaoqin1; Maybank, Stephen2
2015-04-01
发表期刊IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
卷号37期号:4页码:816-833
文章类型Article
摘要In this paper, we propose a tracking algorithm based on a multi-feature joint sparse representation. The templates for the sparse representation can include pixel values, textures, and edges. In the multi-feature joint optimization, noise or occlusion is dealt with using a set of trivial templates. A sparse weight constraint is introduced to dynamically select the relevant templates from the full set of templates. A variance ratio measure is adopted to adaptively adjust the weights of different features. The multi-feature template set is updated adaptively. We further propose an algorithm for tracking multi-objects with occlusion handling based on the multi-feature joint sparse reconstruction. The observation model based on sparse reconstruction automatically focuses on the visible parts of an occluded object by using the information in the trivial templates. The multi-object tracking is simplified into a joint Bayesian inference. The experimental results show the superiority of our algorithm over several state-of-the-art tracking algorithms.
关键词Visual Object Tracking Tracking Multi-objects Under Occlusions Multi-feature Joint Sparse Representation
WOS标题词Science & Technology ; Technology
关键词[WOS]VISUAL TRACKING ; ROBUST ; MODELS ; COLOR ; OPTIMIZATION ; RECOGNITION ; CONTEXT ; FILTER
收录类别SCI
语种英语
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000351213400009
引用统计
被引频次:49[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/8089
专题模式识别国家重点实验室_视频内容安全
作者单位1.Chinese Acad Sci, Natl Lab Pattern Recognit, Inst Automat, Beijing 100190, Peoples R China
2.Univ London Birkbeck Coll, Dept Comp Sci & Informat Syst, London WC1E 7HX, England
推荐引用方式
GB/T 7714
Hu, Weiming,Li, Wei,Zhang, Xiaoqin,et al. Single and Multiple Object Tracking Using a Multi-Feature Joint Sparse Representation[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2015,37(4):816-833.
APA Hu, Weiming,Li, Wei,Zhang, Xiaoqin,&Maybank, Stephen.(2015).Single and Multiple Object Tracking Using a Multi-Feature Joint Sparse Representation.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,37(4),816-833.
MLA Hu, Weiming,et al."Single and Multiple Object Tracking Using a Multi-Feature Joint Sparse Representation".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 37.4(2015):816-833.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
06891248.pdf(1758KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hu, Weiming]的文章
[Li, Wei]的文章
[Zhang, Xiaoqin]的文章
百度学术
百度学术中相似的文章
[Hu, Weiming]的文章
[Li, Wei]的文章
[Zhang, Xiaoqin]的文章
必应学术
必应学术中相似的文章
[Hu, Weiming]的文章
[Li, Wei]的文章
[Zhang, Xiaoqin]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 06891248.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。