CASIA OpenIR  > 09年以前成果
A novel LS-SVMs hyper-parameter selection based on particle swarm optimization
Guo, X. C.1,2; Yang, J. H.1; Wu, C. G.1,3; Wang, C. Y.1; Liang, Y. C.1
2008-10-01
发表期刊NEUROCOMPUTING
卷号71期号:16-18页码:3211-3215
文章类型Article
摘要The selection of hyper-parameters plays an important role to the performance of least-squares support vector machines (LS-SVMs). In this paper, a novel hyper-parameter selection method for LS-SVMs is presented based on the particle swarm optimization (PSO). The proposed method does not need any priori knowledge on the analytic property of the generalization performance measure and can be used to determine multiple hyper-parameters at the same time. The feasibility of this method is examined on benchmark data sets. Different kinds of kernel families are investigated by using the proposed method. Experimental results show that the best or quasi-best test performance could be obtained by using the scaling radial basis kernel function (SRBF) and RBF kernel functions, respectively. (C) 2008 Elsevier B.V. All rights reserved.
关键词Least-squares Support Vector Machines Parameter Selection Particle Swarm Optimization Classification
WOS标题词Science & Technology ; Technology
关键词[WOS]SUPPORT VECTOR MACHINE ; LEAST-SQUARES ; MODEL SELECTION ; GENETIC ALGORITHMS ; CLASSIFICATION ; REGRESSION ; BOUNDS ; CLASSIFIERS ; KERNELS ; LSSVM
收录类别ISTP ; SCI
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000260066100020
引用统计
被引频次:92[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/9608
专题09年以前成果
作者单位1.Jilin Univ, Coll Comp Sci & Technol, Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Changchun 130012, Peoples R China
2.NE Dianli Univ, Coll Sci, Jilin 132012, Peoples R China
3.Chinese Acad Sci, Natl Lab Pattern Recognit, Inst Automat, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Guo, X. C.,Yang, J. H.,Wu, C. G.,et al. A novel LS-SVMs hyper-parameter selection based on particle swarm optimization[J]. NEUROCOMPUTING,2008,71(16-18):3211-3215.
APA Guo, X. C.,Yang, J. H.,Wu, C. G.,Wang, C. Y.,&Liang, Y. C..(2008).A novel LS-SVMs hyper-parameter selection based on particle swarm optimization.NEUROCOMPUTING,71(16-18),3211-3215.
MLA Guo, X. C.,et al."A novel LS-SVMs hyper-parameter selection based on particle swarm optimization".NEUROCOMPUTING 71.16-18(2008):3211-3215.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Guo, X. C.]的文章
[Yang, J. H.]的文章
[Wu, C. G.]的文章
百度学术
百度学术中相似的文章
[Guo, X. C.]的文章
[Yang, J. H.]的文章
[Wu, C. G.]的文章
必应学术
必应学术中相似的文章
[Guo, X. C.]的文章
[Yang, J. H.]的文章
[Wu, C. G.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。