Perturbation LDA: Learning the difference between the class empirical mean and its expectation
Zheng, Wei-Shi2,3; Lai, J. H.1,3; Yuen, Pong C.4; Lie, Stan Z.5,6
2009-05-01
发表期刊PATTERN RECOGNITION
卷号42期号:5页码:764-779
文章类型Article
摘要Fisher's linear discriminant analysis (LDA) is popular for dimension reduction and extraction of discriminant features in many pattern recognition applications, especially biometric learning. In deriving the Fisher's LDA formulation, there is an assumption that the class empirical mean is equal to its expectation. However, this assumption may not be valid in practice. In this paper, from the "perturbation" perspective, we develop a new algorithm, called perturbation LDA (P-LDA), in which perturbation random vectors are introduced to learn the effect of the difference between the class empirical mean and its expectation in Fisher criterion. This perturbation learning in Fisher criterion would yield new forms of within-class and between-class covariance matrices integrated with some perturbation factors. Moreover, a method is proposed for estimation of the covariance matrices of perturbation random vectors for practical implementation. The proposed P-LDA is evaluated on both synthetic data sets and real face image data sets. Experimental results show that P-LDA outperforms the popular Fisher's LDA-based algorithms in the undersampled case. (C) 2008 Elsevier Ltd. All rights reserved.
关键词Fisher Criterion Perturbation Analysis Face Recognition
WOS标题词Science & Technology ; Technology
关键词[WOS]LINEAR DISCRIMINANT-ANALYSIS ; FACE-RECOGNITION ; TRANSFORMATION ; REDUCTION ; ALGORITHM ; SAMPLES ; PCA
收录类别SCI
语种英语
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000263431200016
引用统计
被引频次:14[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/9717
专题模式识别国家重点实验室_生物识别与安全技术研究
作者单位1.Sun Yat Sen Univ, Sch Informat Sci & Technol, Dept Elect & Commun Engn, Guangzhou 510275, Guangdong, Peoples R China
2.Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
3.Guangdong Prov Key Lab Informat Secur, Guangzhou, Guangdong, Peoples R China
4.Hong Kong Baptist Univ, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China
5.Chinese Acad Sci, Ctr Biometr & Secur Res, Beijing, Peoples R China
6.Chinese Acad Sci, Natl Lab Pattern Recognit, Inst Automat, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Zheng, Wei-Shi,Lai, J. H.,Yuen, Pong C.,et al. Perturbation LDA: Learning the difference between the class empirical mean and its expectation[J]. PATTERN RECOGNITION,2009,42(5):764-779.
APA Zheng, Wei-Shi,Lai, J. H.,Yuen, Pong C.,&Lie, Stan Z..(2009).Perturbation LDA: Learning the difference between the class empirical mean and its expectation.PATTERN RECOGNITION,42(5),764-779.
MLA Zheng, Wei-Shi,et al."Perturbation LDA: Learning the difference between the class empirical mean and its expectation".PATTERN RECOGNITION 42.5(2009):764-779.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zheng, Wei-Shi]的文章
[Lai, J. H.]的文章
[Yuen, Pong C.]的文章
百度学术
百度学术中相似的文章
[Zheng, Wei-Shi]的文章
[Lai, J. H.]的文章
[Yuen, Pong C.]的文章
必应学术
必应学术中相似的文章
[Zheng, Wei-Shi]的文章
[Lai, J. H.]的文章
[Yuen, Pong C.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。