CASIA OpenIR  > 智能感知与计算研究中心
Information-Theoretic Outlier Detection for Large-Scale Categorical Data
Wu, Shu1; Wang, Shengrui2
2013-03-01
发表期刊IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
卷号25期号:3页码:589-602
文章类型Article
摘要Outlier detection can usually be considered as a pre-processing step for locating, in a data set, those objects that do not conform to well-defined notions of expected behavior. It is very important in data mining for discovering novel or rare events, anomalies, vicious actions, exceptional phenomena, etc. We are investigating outlier detection for categorical data sets. This problem is especially challenging because of the difficulty of defining a meaningful similarity measure for categorical data. In this paper, we propose a formal definition of outliers and an optimization model of outlier detection, via a new concept of holoentropy that takes both entropy and total correlation into consideration. Based on this model, we define a function for the outlier factor of an object which is solely determined by the object itself and can be updated efficiently. We propose two practical 1-parameter outlier detection methods, named ITB-SS and ITB-SP, which require no user-defined parameters for deciding whether an object is an outlier. Users need only provide the number of outliers they want to detect. Experimental results show that ITB-SS and ITB-SP are more effective and efficient than mainstream methods and can be used to deal with both large and high-dimensional data sets where existing algorithms fail.
关键词Outlier Detection Holoentropy Total Correlation Outlier Factor Attribute Weighting Greedy Algorithms
WOS标题词Science & Technology ; Technology
关键词[WOS]ANOMALY DETECTION ; LOCAL OUTLIERS ; DATA SETS ; SUPPORT
收录类别SCI
语种英语
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Engineering, Electrical & Electronic
WOS记录号WOS:000314934900009
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/10749
专题智能感知与计算研究中心
通讯作者Wu, Shu
作者单位1.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit NLPR, Beijing 100190, Peoples R China
2.Univ Sherbrooke, Dept Comp Sci, Sherbrooke, PQ J1K 2R1, Canada
推荐引用方式
GB/T 7714
Wu, Shu,Wang, Shengrui. Information-Theoretic Outlier Detection for Large-Scale Categorical Data[J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,2013,25(3):589-602.
APA Wu, Shu,&Wang, Shengrui.(2013).Information-Theoretic Outlier Detection for Large-Scale Categorical Data.IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,25(3),589-602.
MLA Wu, Shu,et al."Information-Theoretic Outlier Detection for Large-Scale Categorical Data".IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 25.3(2013):589-602.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Information-theoreti(1401KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wu, Shu]的文章
[Wang, Shengrui]的文章
百度学术
百度学术中相似的文章
[Wu, Shu]的文章
[Wang, Shengrui]的文章
必应学术
必应学术中相似的文章
[Wu, Shu]的文章
[Wang, Shengrui]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Information-theoretic Outlier Detection for large-scale Categorical Data.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。